ÌâÄ¿ÄÚÈÝ
18£®ÈçͼËùʾ£¬ÔÚ¹â»¬Ë®Æ½ÃæÉϽ¨Á¢xÖᣬÔÚxÖáÉÏ·ÅÖÃÒ»³¤¶ÈL=1m£¬ÖÊÁ¿M=2kgµÄ¹â»¬±¡Ä¾ÌõA£¬ÆäÓҶ˵ã×ø±êΪx1=0£¬±¡Ä¾ÌõAÉÏ×ø±êΪx2=-0.6£¨m£©´¦·ÅÖÃÒ»ÖÊÁ¿Îªm=1kgµÄÖʵãB£¬ÏÖ¶Ô±¡Ä¾ÌõAÊ©¼ÓˮƽÏòÓҵĺãÁ¦F£¬Í¬Ê±¶ÔBÊ©¼ÓºãÁ¦F0=1N£¬µ±ÖʵãBÔ˶¯µ½x0´¦Ê±£¬ÖʵãBÇ¡Ó뱡ľÌõA·ÖÀ룬´ËʱÁ¢¼´³·³ýºãÁ¦F0£¬²¢¼ÓÉÏ´óСΪ5F0£¬·½ÏòÏò×óµÄºãÁ¦£¬ÖʵãBµ½´ïx1=0ʱËÙ¶ÈÇ¡ºÃΪÁ㣬g=10m/s2£®Ç󣺣¨1£©x0µÄ×ø±ê£»
£¨2£©¼ÓÔÚ±¡Ä¾ÌõAÉϺ㶨ˮƽ×÷ÓÃÁ¦FµÄ´óС£»
£¨3£©µ±ÖʵãBµ½´ïx1=0ʱËÙ¶ÈÇ¡ºÃΪÁãʱ£¬ÖʵãBÓ뱡ľÌõAÓҶ˵ľàÀ룮
·ÖÎö £¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öBµÄ¼ÓËÙ¶È£¬È»ºóÓÉËÙ¶ÈÎ»ÒÆ¹«Ê½Çó³öx0µÄ×ø±ê£®
£¨2£©¸ù¾ÝÌâÒâÇó³öBÓëA·ÖÀëʱAµÄÎ»ÒÆ£¬È»ºóÓ¦ÓÃÔ˶¯Ñ§¹«Ê½Çó³öAµÄ¼ÓËÙ¶È£¬È»ºóÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ¦F£®
£¨3£©Ó¦ÓÃÔ˶¯Ñ§¹«Ê½Çó³öAµÄÎ»ÒÆ£¬È»ºóÇó³ö¾àÀ룮
½â´ð ½â£º£¨1£©¶ÔB£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºa1=$\frac{{F}_{0}}{m}$=$\frac{1}{1}$=1m/s2£¬a2=$\frac{5{F}_{0}}{m}$=$\frac{5¡Á1}{1}$=5m/s2£¬
BÏòÓÒÏÈ×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬È»ºóÏòÓÒ×öÔȼõËÙÖ±ÏßÔ˶¯µ½ËÙ¶ÈΪÁ㣬
ÓÉÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈÎ»ÒÆ¹«Ê½µÃ£º$\frac{{v}^{2}}{2{a}_{1}}$+$\frac{{v}^{2}}{2{a}_{2}}$=|x2|£¬¼´£º$\frac{{v}^{2}}{2¡Á1}$+$\frac{{v}^{2}}{2¡Á5}$=0.6£¬
½âµÃ£ºv=1m/s£¬ÔȼÓËÙµÄÎ»ÒÆ£ºs=$\frac{{v}^{2}}{2{a}_{1}}$=$\frac{{1}^{2}}{2¡Á1}$=0.5m£¬Ôò£ºx0=x2+s=-0.6+0.5=-0.1m£»
£¨2£©BÔȼÓËÙµÄÔ˶¯Ê±¼ä£ºt1=$\frac{v}{{a}_{1}}$=$\frac{1}{1}$=1s£¬ÔȼõËÙµÄÔ˶¯Ê±¼ä£ºt2=$\frac{v}{{a}_{2}}$=$\frac{1}{5}$=0.2s£»
BÓëA·ÖÀëʱAµÄÎ»ÒÆ£ºsA=L+x0=1-0.1=0.9m£¬
A×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£¬
AµÄ¼ÓËÙ¶È£ºaA=$\frac{2{s}_{A}}{{t}_{1}^{2}}$=$\frac{2¡Á0.9}{{1}^{2}}$=1.8m/s2£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖª£¬ÀÁ¦£ºF=MaA=2¡Á1.8=3.6N£»
£¨3£©BËÙ¶ÈΪÁãʱ£¬AµÄÎ»ÒÆ£ºsA¡ä=$\frac{1}{2}$aA£¨t1+t2£©2=$\frac{1}{2}$¡Á1.8¡Á£¨1+0.2£©2=1.296m£¬
ÖʵãBµ½´ïx1=0ʱB¾àAÓҶ˵ľàÀ룺d=sA¡ä=1.296m£»
´ð£º£¨1£©x0µÄ×ø±êΪ-0.1m£»
£¨2£©¼ÓÔÚ±¡Ä¾ÌõAÉϺ㶨ˮƽ×÷ÓÃÁ¦FµÄ´óСΪ3.6N£»
£¨3£©µ±ÖʵãBµ½´ïx1=0ʱËÙ¶ÈÇ¡ºÃΪÁãʱ£¬ÖʵãBÓ뱡ľÌõAÓҶ˵ľàÀëΪ1.296m£®
µãÆÀ ±¾Ì⿼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂɵÄÓ¦Óã¬ÓÉÓÚÎïÌåÔ˶¯¹ý³Ì¸´ÔÓ£¬±¾ÌâÄѶȽϴ󣬷ÖÎöÇå³þÎïÌåÔ˶¯¹ý³ÌÊǽâÌâµÄǰÌáÓë¹Ø¼ü£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÓëÔ˶¯Ñ§¹«Ê½¿ÉÒÔ½âÌ⣮
| A£® | Ð±ÃæµÄ¸ß¶È | B£® | Ð±ÃæµÄÇã½Ç | ||
| C£® | Ï»¬¹ý³ÌµÄÖмäʱ¿ÌµÄËÙ¶È | D£® | ¾¹ýÐ±ÃæÖеãʱµÄËÙ¶È |
| A£® | $\frac{{x}_{1}+{x}_{2}}{2}$ | B£® | $\frac{{x}_{1}+5{x}_{2}}{4}$ | C£® | $\frac{2{x}_{1}+12{x}_{2}}{9}$ | D£® | $\frac{5{x}_{1}-2{x}_{2}}{9}$ |
| A£® | ODµÄ³¤¶È±íʾOAÕâ¶Îʱ¼äÄÚÆ½¾ùËٶȵĴóС | |
| B£® | ABµÄ³¤¶È±íʾOAÕâ¶Îʱ¼äµÄÄ©ËٶȵĴóС | |
| C£® | OBµÄ³¤¶È±íʾÎï¿éÔÚÐ±ÃæÉÏÏ»¬µÄ¼ÓËٶȵĴóС | |
| D£® | Èý½ÇÐÎOABµÄÃæ»ý±íʾOAÕâ¶Îʱ¼äÄÚÎ»ÒÆµÄ´óС |
| A£® | СÇòAÖ»Êܵ½¸Ë¶ÔAµÄµ¯Á¦ | |
| B£® | СÇòAÊܵ½µÄ¸ËµÄµ¯Á¦´óСΪ20 N | |
| C£® | ´ËʱÉþ×ÓÓë´©ÓÐAÇòµÄ¸Ë´¹Ö±£¬Éþ×ÓÕÅÁ¦´óСΪ$\frac{{20\sqrt{3}}}{3}N$ | |
| D£® | СÇòBÊܵ½¸ËµÄµ¯Á¦´óСΪ$\frac{{20\sqrt{3}}}{3}N$ |
| A£® | ÓÉE=$\frac{F}{q}$¿ÉÖª£¬Ä³µç³¡µÄ³¡Ç¿EÓëq³É·´±È£¬ÓëF³ÉÕý±È | |
| B£® | ÔÚÕæ¿ÕÖеãµçºÉQ²úÉúµÄµç³¡£¬µç³¡Ç¿¶ÈµÄ±í´ïʽE=$\frac{kq}{{r}^{2}}$£¬Ê½ÖÐqÊǼìÑéµçºÉµÄµçÁ¿ | |
| C£® | ÓÉE=$\frac{kQ}{{r}^{2}}$¿ÉÖª£¬ÔÚÕæ¿ÕÖеãµçºÉQ²úÉúµÄµç³¡ÖÐijµãµÄµç³¡Ç¿¶È´óСÓëQ³ÉÕý±È£¬Óër2³É·´±È | |
| D£® | ÔÚÕæ¿ÕÖеãµçºÉQ²úÉúµÄµç³¡ÖУ¬µç³¡Ç¿¶ÈµÄ¶¨ÒåʽE=$\frac{F}{Q}$ÈÔ³ÉÁ¢£¬Ê½ÖеÄQ¾ÍÊDzúÉúµç³¡µÄµãµçºÉ |