ÌâÄ¿ÄÚÈÝ
11£®£¨1£©µ±B¸ÕÒªÀ뿪µ²°åCʱ£¬Îï¿éAÔ˶¯µÄ¾àÀë
£¨2£©µ±B¸ÕÒªÀ뿪µ²°åCʱ£¬Îï¿éAÔ˶¯µÄËÙ¶È£®
·ÖÎö £¨1£©¿ªÊ¼Ê±AѹËõµ¯»É£¬¸ù¾ÝƽºâÌõ¼þ¼°ºúÈ·¶¨ÂÉ¿ÉÇóµÃÐαäÁ¿£»¶øµ±B¸ÕÒªÀ뿪ʱ£¬BÓëµµ°å¼äÇ¡ºÃûÓÐѹÁ¦£¬Í¬Àí¸ù¾Ýºú¿Ë¶¨ÂÉ¿ÉÇóµÃÐαäÁ¿£¬´Ó¶øÇó³öA»¬¶¯µÄ¾àÀ룻
£¨2£©¶ÔÈ«¹ý³Ì¸ù¾Ý¶¯Äܶ¨Àí½øÐзÖÎö£¬¼´¿ÉÇó³öAµÄËÙ¶È£®
½â´ð ½â£º£¨1£©¿ªÊ¼AѹËõµ¯»É£¬Ê¹µ¯»ÉËõ¶Ìx1
mgsin¦È=kx1
½âµÃ£º
x1=$\frac{mgsin¦È}{k}$
µ±B¸ÕÒªÀ뿪µ²°å£¬´Ëʱµ¯»ÉÉ쳤x2
mgsin¦È=kx2
½âµÃ£ºx2=$\frac{mgsin¦È}{k}$
AÔ˶¯µÄ¾àÀëd=$\frac{2mgsin¦È}{k}$
£¨2£©A´Ó¿ªÊ¼Ô˶¯µ½B¸ÕÒªÀ뿪µ²°å¹ý³Ì£¬µ¯Á¦²»×ö¹¦£¬Óɶ¯Äܶ¨ÀíÓУº
Fd-mgsin¦È•d=$\frac{1}{2}m{v^2}$
v=$\sqrt{\frac{4gsin¦È£¨F-mgsin¦È£©}{k}}$
´ð£º£¨1£©µ±B¸ÕÒªÀ뿪µ²°åCʱ£¬Îï¿éAÔ˶¯µÄ¾àÀëΪ$\frac{2mgsin¦È}{k}$£»
£¨2£©µ±B¸ÕÒªÀ뿪µ²°åCʱ£¬Îï¿éAÔ˶¯µÄËÙ¶ÈΪ$\sqrt{\frac{4gsin¦È£¨F-mgsin¦È£©}{k}}$£®
µãÆÀ ±¾Ì⿼²é¶¯Äܶ¨ÀíÒÔ¼°ºú¿Ë¶¨ÂɵÄÓ¦Óã¬Òª×¢ÒâÔÚÈ«¹ý³ÌÖе¯»ÉµÄµ¯ÐÔÊÆÄÜûÓб仯£¬¹ÊÈ«¹ý³ÌÖе¯Á¦×ö¹¦ÎªÁ㣬ÕâÊǽâÌâµÄ¹Ø¼ü£®
| A£® | Öð½¥Ôö´ó | B£® | ÏÈÔö´óºó¼õС | ||
| C£® | ÏȼõСºóÔö´ó | D£® | ÏÈÔö´óºó¼õС£¬ÔÙÔö´ó£¬½Ó×ÅÔÙ¼õС |
| A£® | Ïß¿òÔÈËÙÔ˶¯½øÈë´Å³¡£¬¼ÓËÙÔ˶¯³ö´Å³¡ | |
| B£® | Ïß¿ò¼ÓËÙÔ˶¯½øÈë´Å³¡£¬¼ÓËÙÔ˶¯³ö´Å³¡ | |
| C£® | Ïß¿ò¼õËÙÔ˶¯½øÈë´Å³¡£¬¼ÓËÙÔ˶¯³ö´Å³¡ | |
| D£® | Ïß¿ò¼ÓËÙÔ˶¯½øÈë´Å³¡£¬ÔÈËÙÔ˶¯³ö´Å³¡ |
| A£® | СÇò°Ú¶¯µ½×îµÍµãʱϸÉþ¶ÔСÇòµÄÀÁ¦´óСΪ18N | |
| B£® | СÇò°Ú¶¯µ½×îµÍµãʱ£¬ÖØÁ¦¶ÔСÇò×ö¹¦µÄ¹¦ÂÊΪ0W | |
| C£® | СÇò´ÓÊͷŵ½µÚÒ»´Î°Ú¶¯µ½×îµÍµãµÄ¹ý³ÌÖÐËðʧµÄ»úеÄÜΪ1J | |
| D£® | СÇò´ÓÊͷŵ½µÚÒ»´Î°Ú¶¯µ½×îµÍµãµÄ¹ý³ÌÖÐÖØÁ¦×ö¹¦Îª9J |