ÌâÄ¿ÄÚÈÝ
16£®£¨1£©Ë®Æ½Éä³öµÄÁ£×ÓµÄËÙ¶È£»
£¨2£©½ðÊô°å¼äµÄµçѹ´óС£»
£¨3£©ÊúÖ±ÏòÏÂÉä³öµÄÁ£×Óµ½´ïb°åµÄËÙ¶È£®
·ÖÎö £¨1£©ÓÉÔÈËÙÖ±ÏßÔ˶¯¼´¿ÉÇó³öÁ£×ÓµÄËÙ¶È£»
£¨2£©Á£×Ó½øÈëKС¿×ºó·¢Éúƫת£¬×öÀàÆ½Å×Ô˶¯£¬½«Ô˶¯·Ö½â¼´¿ÉÇó³ö£»
£¨3£©Á£×ÓÔ˶¯ µÄ¹ý³ÌÖе糡Á¦×ö¹¦£¬Óɶ¯Äܶ¨Àí¼´¿ÉÇó³ö£®
½â´ð ½â£º£¨1£©Á£×ÓÑØË®Æ½·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔòËÙ¶È£ºv=$\frac{s}{t}$
£¨2£©Á£×Ó½øÈëKС¿×ºó·¢Éúƫת£¬×öÀàÆ½Å×Ô˶¯£ºh=$\frac{1}{2}a{t}_{2}^{2}$£¬
ËùÒÔ£º${t}_{2}=\frac{l}{v}$
ÓÖ£ºF=Eq
ÆäÖУºa=$\frac{F}{m}$£¬E=$\frac{U}{h}$
´úÈ룬½âµÃ£ºU=$\frac{2{h}^{2}m{s}^{2}}{q{l}^{2}{t}^{2}}$
£¨3£©ÊúÖ±Á£×Ó½øÈëOºó×ö¼ÓËÙÔ˶¯£ºqU=$\frac{1}{2}m{v}_{b}^{2}-\frac{1}{2}m{v}^{2}$
´úÈë½âµÃÁ£×Óµ½´ïb°åµÄËÙ¶È£º${v}_{b}=\frac{s}{lt}•\sqrt{4{h}^{2}+{t}^{2}}$
´ð£º£¨1£©Ë®Æ½Éä³öµÄÁ£×ÓµÄËÙ¶ÈÊÇ$\frac{s}{t}$£»
£¨2£©½ðÊô°å¼äµÄµçѹ´óСÊÇ$\frac{2{h}^{2}m{s}^{2}}{q{l}^{2}{t}^{2}}$£»
£¨3£©ÊúÖ±ÏòÏÂÉä³öµÄÁ£×Óµ½´ïb°åµÄËÙ¶ÈÊÇ$\frac{s}{lt}•\sqrt{4{h}^{2}+{t}^{2}}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊǶÔÈ«²¿¹ý³ÌÔËÓö¯Äܶ¨ÀíÁз½³ÌÇó½â£¬Èç¹û²ÉÓÃÕý½»·Ö½â·¨ºóÁÐʽ£¬»áʹÎÊÌ⸴ÔÓ»¯£®
| A£® | A¡¢BÇò¼äµÄϸÏßµÄÕÅÁ¦Îª$\frac{5mg-qE}{2}$ | |
| B£® | A¡¢BÇò¼äµÄϸÏßµÄÕÅÁ¦¿ÉÄÜΪ0 | |
| C£® | ½«ÏßOA¼ô¶ÏµÄ˲¼ä£¬B¡¢CÇò¼äµÄϸÏßÕÅÁ¦$\frac{qE}{12}$ | |
| D£® | ½«ÏßOA¼ô¶ÏµÄ˲¼ä£¬A¡¢BÇò¼äµÄϸÏßÕÅÁ¦$\frac{qE}{6}$ |