ÌâÄ¿ÄÚÈÝ
9£®ÏÖҪͨ¹ýʵÑéÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®ÊµÑé×°ÖÃÈçͼ1Ëùʾ£ºË®Æ½×ÀÃæÉϹ̶¨Ò»ÇãбµÄÆøµæµ¼¹ì£»µ¼¹ìÉÏAµã´¦ÓÐÒ»´ø³¤·½ÐÎÕÚ¹âÆ¬µÄ»¬¿é£¬Æä×ÜÖÊÁ¿ÎªM£¬×ó¶ËÓÉ¿ç¹ýÇáÖʹ⻬¶¨»¬ÂÖµÄϸÉþÓëÒ»ÖÊÁ¿ÎªmµÄíÀÂëÏàÁ¬£»ÕÚ¹âÆ¬Á½Ìõ³¤±ßÓëµ¼¹ì´¹Ö±£»µ¼¹ìÉÏBµãÓÐÒ»¹âµçÃÅ£¬¿ÉÒÔ²âÁ¿ÕÚ¹âÆ¬¾¹ý¹âµçÃÅʱµÄµ²¹âʱ¼ät£®ÓÃd±íʾAµãµ½µ¼¹ìµ×¶ËCµãµÄ¾àÀ룬h±íʾAÓëCµÄ¸ß¶È²î£¬b±íʾÕÚ¹âÆ¬µÄ¿í¶È£¬s±íʾA¡¢BÁ½µã¼äµÄ¾àÀ룬½«ÕÚ¹âÆ¬Í¨¹ý¹âµçÃŵį½¾ùËÙ¶È¿´×÷»¬¿éͨ¹ýBµãʱµÄ˲ʱËÙ¶È£®ÓÃg±íÊ¾ÖØÁ¦¼ÓËÙ¶È£®Íê³ÉÏÂÁÐÌî¿ÕºÍ×÷ͼ£º£¨1£©Èô½«»¬¿é×ÔAµãÓɾ²Ö¹ÊÍ·Å£¬ÔòÔÚ»¬¿é´ÓAÔ˶¯ÖÁBµÄ¹ý³ÌÖУ¬»¬¿é¡¢ÕÚ¹âÆ¬ÓëíÀÂë×é³ÉµÄÏµÍ³ÖØÁ¦ÊÆÄܵļõСÁ¿¿É±íʾΪMg$\frac{h}{d}$-mgs£¬¶¯ÄܵÄÔö¼ÓÁ¿¿É±íʾΪ$\frac{1}{2}$£¨M+m£©$\frac{{b}^{2}}{{t}^{2}}$£®ÈôÔÚÔ˶¯¹ý³ÌÖлúеÄÜÊØºã£¬$\frac{1}{{t}^{2}}$ÓësµÄ¹ØÏµÊ½Îª$\frac{1}{{t}^{2}}$=$\frac{2£¨hM+dm£©gs}{£¨M+m£©d{b}^{2}}$£®
£¨2£©¶à´Î¸Ä±ä¹âµçÃŵÄλÖã¬Ã¿´Î¾ùÁ¿é×Ôͬһµã£¨Aµã£©Ï»¬£¬²âÁ¿ÏàÓ¦µÄsÓëtÖµ£®Èç¹ûÈçϱíËùʾ£ºÒÔsΪºá×ø±ê£¬$\frac{1}{{t}^{2}}$Ϊ×Ý×ø±ê£¬ÔÚ´ðÌ⿨¶ÔӦͼ2λÖõÄ×ø±êÖ½ÖÐÃè³öµÚ1ºÍµÚ5¸öÊý¾Ýµã£»¸ù¾Ý5¸öÊý¾Ýµã×÷Ö±Ïߣ¬ÇóµÃ¸ÃÖ±ÏßµÄбÂÊk=2.39¡Á104 m-1•s-2£¨±£Áô3λÓÐЧÊý×Ö£©£®
1 | 3 | 4 | 5 | |
s£¨m£© | 0.600 | 1.000 | 1.200 | 1.400 |
t£¨ms£© | 8.22 | 6.44 | 5.85 | 5.43 |
$\frac{1}{{t}^{2}}$£¨104 s-2£© | 1.48 | 2.41 | 2.92 | 3.39 |
·ÖÎö £¨1£©Ã÷È·Ñо¿¶ÔÏó²»Êǵ¥¸öÎïÌå¶øÊÇ»¬¿é¡¢ÕÚ¹âÆ¬ÓëíÀÂë×é³ÉµÄϵͳ£®¶ÔÓÚϵͳµÄÖØÁ¦ÊÆÄܱ仯Á¿Òª¿¼ÂÇϵͳÄÚÿһ¸öÎïÌåµÄÖØÁ¦ÊÆÄܱ仯Á¿£®¶¯ÄÜÒ²ÊÇÒ»Ñù£®
£¨2£©¹âµçÃŲâÁ¿Ë²Ê±ËÙ¶ÈÊÇʵÑéÖг£Óõķ½·¨£®ÓÉÓÚ¹âµçÃŵĿí¶ÈbºÜС£¬ËùÒÔÎÒÃÇÓúܶÌʱ¼äÄ򵀮½¾ùËÙ¶È´úÌæË²Ê±ËÙ¶È£®¸ù¾Ý±äÁ¿µÄÊý¾Ý×÷³öͼÏ󣬽áºÏÊýѧ֪ʶÇó³öбÂÊ£®
½â´ð
½â£º£¨1£©»¬¿é¡¢ÕÚ¹âÆ¬Ï½µÖØÁ¦ÊÆÄܼõС£¬íÀÂëÉÏÉýÖØÁ¦ÊÆÄÜÔö´ó£®
ËùÒÔ»¬¿é¡¢ÕÚ¹âÆ¬ÓëíÀÂë×é³ÉµÄÏµÍ³ÖØÁ¦ÊÆÄܵļõСÁ¿¡÷EP=Mg$\frac{h}{d}$-mgs
¹âµçÃŲâÁ¿Ë²Ê±ËÙ¶ÈÊÇʵÑéÖг£Óõķ½·¨£®ÓÉÓÚ¹âµçÃŵĿí¶ÈbºÜС£¬ËùÒÔÎÒÃÇÓúܶÌʱ¼äÄ򵀮½¾ùËÙ¶È´úÌæË²Ê±ËÙ¶È£®
vB=$\frac{b}{t}$
¸ù¾Ý¶¯Ä͍ܵÒåʽµÃ³ö£º
¡÷Ek=$\frac{1}{2}$£¨m+M£©vB2=$\frac{1}{2}$£¨M+m£©$\frac{{b}^{2}}{{t}^{2}}$
ÈôÔÚÔ˶¯¹ý³ÌÖлúеÄÜÊØºã£¬¡÷Ek=¡÷EP
$\frac{1}{{t}^{2}}$ÓësµÄ¹ØÏµÊ½Îª$\frac{1}{{t}^{2}}$=$\frac{2£¨hM+dm£©gs}{£¨M+m£©d{b}^{2}}$
£¨2£©¸ù¾ÝÃèµã·¨¿ÉµÃ³ö¶ÔÓ¦µÄͼÏóÈçͼËùʾ£»
ÔËÓÃÊýѧ֪ʶÇóµÃбÂÊk=$\frac{£¨3.39-1.48£©¡Á1{0}^{4}}{£¨1.4-0.6£©}$=2.39¡Á104m-1•s-2
ÓɲâµÃµÄh¡¢d¡¢b¡¢MºÍmÊýÖµ¿ÉÒÔ¼ÆËã³ö$\frac{1}{{t}^{2}}$Ö±ÏßµÄбÂÊko=$\frac{2£¨hM-dm£©}{£¨M+m£©d{b}^{2}}$
±È½ÏkÓëko£¬ÈôÆä²îÖµÔÚÊÔÑéÔÊÐíµÄ·¶Î§ÄÚ£¬Ôò¿ÉÈÏΪ´ËÊÔÑéÑéÖ¤ÁË»úеÄÜÊØºã¶¨ÂÉ£®
¹Ê´ð°¸Îª£º£¨1£©Mg$\frac{h}{d}$-mgs£»$\frac{1}{2}$£¨M+m£©$\frac{{b}^{2}}{{t}^{2}}$£¨2£©Èçͼ£¬2.39¡Á104m-1•s-2
µãÆÀ Õâ¸öʵÑé¶ÔÓÚÎÒÃÇ¿ÉÄÜÊÇÒ»¸öеÄʵÑ飬µ«¸ÃʵÑéµÄÔÀí¶¼ÊÇÎÒÃÇѧ¹ýµÄÎïÀí¹æÂÉ£®
×öÈκÎʵÑéÎÊÌ⻹ÊÇÒª´Ó×î»ù±¾µÄÎïÀí¹æÂÉÈëÊÖÈ¥½â¾ö£®¶ÔÓÚϵͳÎÊÌâ´¦ÀíʱÎÒÃÇÒªÇå³þϵͳÄÚ²¿¸÷¸öÎïÌåÄܵı仯£®
ÇóбÂÊʱҪעÒⵥλºÍÓÐЧÊý×ֵı£Áô£®
| A£® | t1£¾t0 | B£® | t1£¼t0 | C£® | t2£¼t1 | D£® | t2£¾t1 |
| A£® | ·ÅÔڴų¡ÖÐͨµçÖ±µ¼ÏßÊܵ½µÄ°²ÅàÁ¦¿ÉÒÔ²»¸ú´Å³¡·½Ïò´¹Ö±£¬µ«¸úµçÁ÷·½Ïò´¹Ö± | |
| B£® | ·ÅÔڴų¡ÖÐµÄÆ½ÃæÆ½Ðдų¡·½Ïòʱ£¬´©¹ýÆ½ÃæµÄ´ÅͨÁ¿Ò»¶¨ÎªÁã | |
| C£® | ´©¹ýÄ³Ò»Æ½ÃæµÄ´ÅͨÁ¿Ô½´ó£¬¸Ã´¦µÄ´Å¸ÐӦǿ¶ÈÒ²Ô½´ó | |
| D£® | Ö»Êܴų¡Á¦×÷ÓõÄÔ˶¯µçºÉÔڴų¡ÖпÉÒÔ×ö¼ÓËÙÇúÏßÔ˶¯ |
| A£® | aµãµÄµç³¡Ç¿¶È·½ÏòÑØÁ½¸ºµçºÉÁ¬ÏßÏò×ó | |
| B£® | bµãµÄµçÊÆ±ÈaµãµÄ¸ß | |
| C£® | cµãµÄµç³¡Ç¿¶ÈΪÁã | |
| D£® | dµãµÄµç³¡Ç¿¶È±ÈcµãµÄ´ó |
| A£® | µçÁ÷±íµÄʾÊýΪ10 A | |
| B£® | ÏßȦת¶¯µÄ½ÇËÙ¶ÈΪ50 ¦Ð rad/s | |
| C£® | 0.01 sʱÏßÈ¦Æ½ÃæÓë´Å³¡·½ÏòƽÐÐ | |
| D£® | 0.02 sʱµç×èRÖеçÁ÷µÄ·½Ïò×ÔÓÒÏò×ó |
| A£® | $\frac{mg{L}^{2}}{4kQ}$ | B£® | $\frac{\sqrt{2}mg{L}^{2}}{2kQ}$ | C£® | $\frac{\sqrt{2}mg{L}^{2}}{4kQ}$ | D£® | $\frac{\sqrt{2}mg{L}^{2}}{kQ}$ |
£¨1£©ÊµÑéʱΪÁËʹС³µÖ»ÔÚÏðÆ¤½î×÷ÓÃÏÂÔ˶¯£¬Ó¦²ÉÈ¡µÄ´ëÊ©ÊǰÑľ°åµÄÄ©¶ËµæÆðÊʵ±¸ß¶ÈÒÔÆ½ºâĦ²ÁÁ¦£»
£¨2£©Ã¿´ÎʵÑéµÃµ½µÄÖ½´øÉϵĵ㲢²»¶¼ÊǾùÔȵģ¬ÎªÁ˼ÆËã³öС³µ»ñµÃµÄËÙ¶È£¬Ó¦Ñ¡ÓÃÖ½´øµÄµã¾à¾ùÔȲ¿·Ö½øÐвâÁ¿£»
£¨3£©Í¬Ñ§ÃÇÉè¼ÆÁËÒÔϱí¸ñÀ´¼Ç¼Êý¾Ý£®ÆäÖÐw1¡¢w2¡¢w3¡¢w4¡±íʾÏðÆ¤½î¶ÔС³µ×öµÄ¹¦£¬v1¡¢v2¡¢v3¡¢v4¡¢¡±íʾÎïÌåÿ´Î»ñµÃµÄËÙ¶È
| ʵÑé´ÎÊý | 1 | 2 | 3 | 4 | ¡ |
| w | w1 | w2 | w3 | w4 | ¡ |
| v | v1 | v2 | v3 | v4 | ¡ |
| A£® | µç×Ó½«ÏòÓÒÆ«×ª | B£® | µç×Ó½«Ïò×óƫת | ||
| C£® | µç×Ó½«ÑØÖ±ÏßÔ˶¯ | D£® | µç×ӵĹìµÀ°ë¾¶½«Ôö´ó |