ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÈôÒÑÖªÁ£×ӵķ¢ÉäËÙÂÊΪvo£¬ÔÚ¾øÔµ°åÉÏ·½¼ÓÒ»µç³¡Ç¿¶È´óСΪE£®·½ÏòÊúÖ±ÏòϵÄÔÈÇ¿µç³¡£¬Çóͬһʱ¿Ì·¢Éä³öµÄ´øµçÁ£×Ó´òµ½°åÉϵÄ×î´óʱ¼ä²î£»
£¨2£©ÈôÁ£×ӵķ¢ÉäËÙÂÊvoδ֪£¬ÔÚ¾øÔµ°åµÄÉÏ·½Ö»¼ÓÒ»·½Ïò´¹Ö±Ö½Ã棬´Å¸ÐӦǿ¶ÈÊʵ±µÄÔÈÇ¿´Å³¡£¬Ê¹Á£×Ó×öÔ²ÖÜÔ˶¯µÄÔ˶¯°ë¾¶´óСǡºÃΪd£¬ÎªÊ¹Í¬Ê±·¢Éä³öµÄÁ£×Ó´òµ½°åÉϵÄ×î´óʱ¼ä²îÓ루1£©ÖÐÏàµÈ£¬ÇóvoµÄ´óС£®
·ÖÎö £¨1£©Í¬Ò»Ê±¿Ì·¢Éä³öµÄÁ£×Ó´òµ½°åÉϵÄ×î´óʱ¼ä²îΪÊúÖ±ÏòÉϺÍÊúÖ±ÏòÏÂÉä³öµÄÁ£×Ó£¬½áºÏÔ˶¯Ñ§¹«Ê½Çó³ö×î´óʱ¼ä²î£®
£¨2£©×÷³öÁ£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼ä×ºÍ×î¶ÌÁ£×ÓÔ˶¯¹ì¼££¬½áºÏ°ë¾¶¹«Ê½ºÍÖÜÆÚ¹«Ê½£¬Í¨¹ý¼¸ºÎ¹ØÏµµÃ³övoµÄ´óС£®
½â´ð ½â£º£¨1£©Á£×ÓÔÚÔÈÇ¿µç³¡ÖÐÔ˶¯µÄ¼ÓËٶȾùÏàͬ£¬¼ÓËÙ¶È£ºa=$\frac{qE}{m}$£¬
×î´óʱ¼ä²îΪÊúÖ±ÏòÉϺÍÊúÖ±ÏòÏÂÉä³öµÄÁ£×Ó£¬ÉèÆäÔ˶¯Ê±¼äÖ®²îΪ¡÷t£¬Ôò£º¡÷t=$\frac{{2{v_0}}}{a}$£¬
ÓÖÓУº$\frac{q}{m}$=k£¬½âµÃ£¬×î´óʱ¼ä²îΪ $¡÷t=\frac{{2{v_0}}}{kE}$£»
£¨2£©Éè´ËʱÁ£×Ó³öÉäËٶȵĴóСΪv0£¬
Ôڴų¡ÖÐÔ˶¯Ê±¼ä×ºÍ×î¶ÌµÄÁ£×ÓÔ˶¯¹ì¼£Ê¾ÒâͼÈçÏ£º![]()
Óɼ¸ºÎ¹ØÏµ¿ÉÖª£º×ʱ¼ä£ºt1=$\frac{3}{4}T$£¬×î¶Ìʱ¼ä£ºt2=$\frac{1}{6}T$£¬
ÓÖÓÐÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚ$T=\frac{2¦Ðm}{qB}$£¬
¸ù¾ÝÌâÒ⣺t1-t2=¡÷t£¬½âµÃ£ºB=$\frac{7¦ÐE}{12{v}_{0}}$£¬
Á£×ÓÔڴų¡ÖÐËùÊܵÄÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B=m$\frac{{v}_{0}^{2}}{R}$£¬½âµÃ£ºR=$\frac{m{v}_{0}}{qB}$£¬
ÓÉÌâÒâ¿ÉÖª£ºR=d£¬½âµÃ£ºv0=$\sqrt{\frac{7¦ÐkdE}{12}}$£»
´ð£º£¨1£©Í¬Ò»Ê±¿Ì·¢Éä³öµÄ´øµçÁ£×Ó´òµ½°åÉϵÄ×î´óʱ¼ä²îΪ$\frac{2{v}_{0}}{kE}$£»
£¨2£©ÈôvoµÄ´óСΪ$\sqrt{\frac{7¦ÐkdE}{12}}$£®
µãÆÀ ±¾Ì⿼²éÁË´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯£¬´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£»È·¶¨´øµçÁ£×ӹ켣µÄ·¶Î§Ò»°ãÓ¦ÓûͼµÄ·½·¨ÕÒ³ö£¬Í¬Ê±¿ÉÒÔ½áºÏ¼¸ºÎ֪ʶ½øÐзÖÎö£®
| A£® | Ïß¿òÖиÐÓ¦µçÁ÷µÄ·½Ïò»á¸Ä±ä | |
| B£® | Ïß¿òab±ß´Ól1Ô˶¯µ½l2ËùÓÃʱ¼ä´óÓÚ´Ól2Ô˶¯µ½l3ËùÓÃʱ¼ä | |
| C£® | Ïß¿òÒÔËÙ¶Èv2ÔÈËÙÖ±ÏßÔ˶¯Ê±£¬·¢Èȹ¦ÂÊΪ$\frac{{{m^2}{g^2}R}}{{4{B^2}{d^2}}}$sin2¦È | |
| D£® | Ïß¿ò´Óab±ß½øÈë´Å³¡µ½ËٶȱäΪv2µÄ¹ý³ÌÖУ¬¼õÉٵĻúеÄÜ¡÷E»úÓëÏß¿ò²úÉúµÄ½¹¶úÈÈQµçµÄ¹ØÏµÊ½ÊÇ¡÷E»ú=WG+$\frac{1}{2}$mv12-$\frac{1}{2}$mv22+Qµç |