ÌâÄ¿ÄÚÈÝ

14£®Ò»°ë¾¶ÎªRµÄԲͲµÄºá½ØÃæÈçͼËùʾ£¬ÆäÔ²ÐÄΪO£®Í²ÄÚÓд¹Ö±ÓÚÖ½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£®Ô²Í²ÏÂÃæÓÐÏà¾àΪdµÄƽÐнðÊô°åM¡¢N£¬M¡¢N°å½ÓÔÚÈçͼËùʾµÄµç·ÖУ¬µçÔ´ÄÚ×èΪr0£¬¶¨Öµµç×è×èֵΪR1£®µ±»¬¶¯±ä×èÆ÷RÁ¬Èëµç·µÄµç×èΪ0£®ÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄ´øÕýµçÁ£×Ó×ÔM°å±ßÔµµÄP´¦Óɾ²Ö¹ÊÍ·Å£¬¾­N°åµÄС¿×SÑØ°ë¾¶SO·½ÏòÉäÈë´Å³¡ÖУ¬Á£×ÓÓëԲͲ·¢ÉúÁ½´ÎÅöײºóÈÔ´ÓS¿×Éä³ö£¬ÉèÁ£×ÓÓëԲͲÅöײ¹ý³ÌÖÐûÓж¯ÄÜËðʧ£¬ÇÒµçºÉÁ¿±£³Ö²»±ä£¬ÔÚ²»¼ÆÖØÁ¦µÄÇé¿öÏ£¬
£¨1£©ÇóM¡¢N¼äµç³¡Ç¿¶ÈEµÄ´óСºÍµçÔ´µç¶¯ÊÆE0µÄ´óС£»
£¨2£©±£³ÖM¡¢NµÄ¾àÀë²»±ä£¬Òƶ¯»¬¶¯±ä×èÆ÷µÄ»¬Æ¬£¬Á£×ÓÈÔ´ÓM°å±ßÔµµÄP´¦Óɾ²Ö¹ÊÍ·Å£¬Á£×Ó½øÈëԲͲÓëԲͲ·¢Éú¶à´ÎÅöײתһÖܺóÈÔ´ÓS¿×Éä³ö£¬Ç󻬶¯±ä×èÆ÷Á¬Èëµç·µÄµç×èR0Ó¦Âú×ãµÄ¹ØÏµ£®

·ÖÎö £¨1£©×÷³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬Óɼ¸ºÎ֪ʶÇó³öÁ£×Óת¹ýµÄÔ²ÐĽÇÓëÁ£×Ó×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶£¬Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ£×ÓµÄËÙ¶È£»Á£×ÓÔڵ糡ÖмÓËÙ£¬Óɶ¯Äܶ¨Àí¿ÉÒÔÇó³ö¼«°å¼äµÄµç³¡Ç¿¶È£¬È»ºóÓÉÅ·Ä·¶¨ÂÉÇó³öµçÔ´µÄµç¶¯ÊÆ£®
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯¡¢ÔÚ¼«°å¼ä¼ÓËÙ£¬¸ù¾ÝÌâÒâÇó³öÁ£×ӵĹìµÀ°ë¾¶£¬È»ºóÇó³ö»¬¶¯±ä×èÆ÷½ÓÈëµç·µÄ×èÖµ£®

½â´ð ½â£º£¨1£©Á£×Ó½øÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÔËÓü¸ºÎ¹ØÏµ×÷³öÔ²ÐÄO¡ä£¬Ô²°ë¾¶Îªr£¬
ÉèµÚÒ»´ÎÅöײµãΪA£¬ÓÉÓÚÁ£×ÓÓëԲͲ·¢ÉúÁ½´ÎÅöײÓÖ´ÓS¿×Éä³ö£¬Òò´ËSA»¡Ëù¶ÔÔ²ÐĽǣº$¡ÏAOS=\frac{2¦Ð}{3}$£®  
Á£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼£ÈçͼËùʾ£¬Óɼ¸ºÎ¹ØÏµµÃ£º$r=Rtan\frac{¦Ð}{3}$£¬
Á£×ÓÔ˶¯¹ý³ÌÖÐÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº$qvB=m\frac{v^2}{r}$£¬
½âµÃ£º$v=\frac{{\sqrt{3}qBR}}{m}$
Á£×ÓÔڵ糡ÖмÓËÙ£¬Óɶ¯Äܶ¨ÀíµÃ£º$qEd=\frac{1}{2}m{v^2}$-0£¬½âµÃ£º$E=\frac{{3q{B^2}{R^2}}}{2md}$£¬
Óɱպϵç·ŷķ¶¨ÂɵãºE0=$\frac{Ed}{R_1}£¨{{R_1}+{r_0}}£©$=$\frac{{3q{B^2}{R^2}}}{{2m{R_1}}}£¨{{R_1}+{r_0}}£©$£»
£¨2£©±£³ÖM¡¢NµÄ¾àÀë²»±ä£¬Òƶ¯»¬¶¯±ä×èÆ÷µÄ»¬Æ¬£¬ÉèÁ£×ÓÓëԲͲ·¢Éún´ÎÅöײºóÈÔ´ÓS¿×Éä³ö£¬
°å¼äµçѹΪUn£¬Ôò£º${U_n}=\frac{{q{B^2}r_n^2}}{2m}$£¬Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶£º${r_n}=Rtan\frac{¦Ð}{n+1}$£¨n=2£¬3£¬4¡­£©£¬
¼«°å¼äµçѹ£º${U_n}=\frac{E_0}{{{R_1}+{R_0}+{r_0}}}{R_1}$£¬½âµÃ£º${R_0}=£¨{{R_1}+{r_0}}£©£¨{3co{t^2}\frac{¦Ð}{n+1}-1}£©$£¨n=2£¬3£¬4¡­£©£»
´ð£º£¨1£©M¡¢N¼äµç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{3q{B}^{2}{R}^{2}}{2md}$£¬µçÔ´µç¶¯ÊÆE0µÄ´óСΪ$\frac{{3q{B^2}{R^2}}}{{2m{R_1}}}£¨{{R_1}+{r_0}}£©$£»
£¨2£©»¬¶¯±ä×èÆ÷Á¬Èëµç·µÄµç×èR0Ó¦Âú×ãµÄ¹ØÏµÎª£º${R_0}=£¨{{R_1}+{r_0}}£©£¨{3co{t^2}\frac{¦Ð}{n+1}-1}£©$£¨n=2£¬3£¬4¡­£©£®

µãÆÀ ±¾Ì⿼²éÁËÁ£×ÓÔڵ糡¡¢´Å³¡ÖеÄÔ˶¯£¬ÊÇÒ»µÀ×ÛºÏÌ⣬·ÖÎöÇå³þÁ£×ÓÔ˶¯¹ý³Ì¡¢Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Å·Ä·¶¨ÂÉ¡¢¶¯Äܶ¨Àí¼´¿ÉÕýÈ·½âÌ⣬½âÌâʱ×÷³öÁ£×ÓµÄÔ˶¯¹ì¼£¡¢×¢Ò⼸ºÎ֪ʶµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø