ÌâÄ¿ÄÚÈÝ
1£®£¨1£©Î¢Á£½øÈëÆ«×ªµç³¡Ê±µÄËÙ¶Èv0´óС
£¨2£©Î¢Á£Éä³öƫתµç³¡Ê±µÄƫת½Ç¦È
£¨3£©Èô¸ÃÔÈÇ¿´Å³¡µÄ¿í¶ÈΪD£¬ÎªÊ¹Î¢Á£²»´Ó¸Ã´Å³¡ÓÒ±ßÉä³ö£¬Ôò´Å¸ÐӦǿ¶ÈBÖÁÉÙ¶à´ó£¿
·ÖÎö £¨1£©Á£×ÓÔÚ¼ÓËٵ糡ÖУ¬µç³¡Á¦×ö¹¦ÎªqU1£¬Óɶ¯Äܶ¨ÀíÇó³öËÙ¶Èv0£®
£¨2£©Á£×Ó½øÈëÆ«×ªµç³¡ºó£¬×öÀàÆ½Å×Ô˶¯£¬ÔËÓÃÔ˶¯µÄ·Ö½â·¨£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§ºÍËٶȵķֽâÇó½âƫת½Ç¦ÈµÄÕýÇУ¬Ôٵõ½Æ«×ª½Ç¦È£®
£¨3£©Á£×Ó½øÈë´Å³¡ºó£¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬½áºÏÌõ¼þ£¬»³ö¹ì¼££¬Óɼ¸ºÎ֪ʶÇó°ë¾¶£¬ÔÙÇóB£®
½â´ð ½â£º£¨1£©Î¢Á£ÔÚ¼ÓËٵ糡ÖÐÔ˶¯¹ý³Ì£¬Óɶ¯Äܶ¨ÀíµÃ£º
qU1=$\frac{1}{2}$mv02
½âµÃ£ºv0=$\sqrt{\frac{2q{U}_{1}}{m}}$£»
£¨2£©Î¢Á£ÔÚÆ«×ªµç³¡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÓУº
¼ÓËÙ¶ÈΪ£ºa=$\frac{q{U}_{2}}{md}$£¬
·É³öµç³¡Ê±£¬ÊúÖ±·ÖËÙ¶ÈΪ£ºvy=at
Ô˶¯Ê±¼äΪ£ºt=$\frac{L}{{v}_{0}}$
ËùÒÔËÙ¶ÈÆ«×ª½ÇµÄÕýÇÐΪ£ºtan¦È=$\frac{{v}_{y}}{{v}_{0}}=\frac{{U}_{2}L}{2{U}_{1}d}=\frac{\frac{1}{2}{U}_{1}L}{2{U}_{1}•\frac{\sqrt{3}}{4}L}=\frac{\sqrt{3}}{3}$
½âµÃ£º¦È=30¡ã£»
£¨3£©´øµç΢Á£½øÈë´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Éè΢Á£¹ìµÀ°ë¾¶ÎªR£¬ÎªÊ¹Î¢Á£²»´Ó¸Ã´Å³¡ÓÒ±ßÉä³ö£¬Æä¹ì¼£Èçͼ£¬
Óɼ¸ºÎ¹ØÏµÖª
$R+\frac{1}{2}R=D$
ËùÒÔ£ºR=$\frac{2}{3}D$
Éè΢Á£½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv¡ä£¬ÔòÓУº$v¡ä=\frac{{v}_{0}}{cos30¡ã}=\frac{{2\sqrt{3}v}_{0}}{3}$
ÓÉÅ£¶ÙÔ˶¯¶¨Âɼ°Ô˶¯Ñ§¹æÂÉÓУº$qv¡äB=\frac{mv{¡ä}^{2}}{R}$
µÃ£º$B=\frac{mv¡ä}{qR}=\frac{m•\frac{2\sqrt{3}{v}_{0}}{3}}{q•\frac{2}{3}D}=\frac{\sqrt{3}m•\sqrt{\frac{2q{U}_{1}}{m}}}{qD}$=$\frac{1}{D}•\sqrt{\frac{6m{U}_{1}}{q}}$£®
Èô´øµçÁ£×Ó²»Éä³ö´Å³¡£¬´Å¸ÐӦǿ¶ÈBÖÁÉÙΪ$\frac{1}{D}•\sqrt{\frac{6m{U}_{1}}{q}}$£®
´ð£º£¨1£©Î¢Á£½øÈëÆ«×ªµç³¡Ê±µÄËÙ¶Èv0´óСÊÇ$\sqrt{\frac{2q{U}_{1}}{m}}$£»
£¨2£©Î¢Á£Éä³öƫתµç³¡Ê±µÄƫת½Ç¦ÈÊÇ30¡ã£®
£¨3£©Èô´øµçÁ£×Ó²»Éä³ö´Å³¡£¬´Å¸ÐӦǿ¶ÈBÖÁÉÙΪ$\frac{1}{D}•\sqrt{\frac{6m{U}_{1}}{q}}$£®
µãÆÀ ±¾ÌâÊÇ´øµçÁ£×ÓÔÚ×éºÏ³¡ÖÐÔ˶¯µÄÎÊÌ⣬¹Ø¼üÊÇ·ÖÎöÁ£×ÓµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£¬ÓÃÁ¦Ñ§µÄ·½·¨´¦Àí£®
¢ÙijͬѧѡȡһÌõ±È½ÏÀíÏëµÄÖ½´ø£¨Í¼2£©½øÐзÖÎö£¬Ð¡³µ¸Õ¿ªÊ¼Ô˶¯Ê±¶ÔÓ¦ÔÚÖ½´øÉϵĵã¼ÇΪÆðʼµãO£¬Ôڵ㼣ÇåÎú¶ÎÒÀ´ÎѡȡÆß¸ö¼ÆÊýµãA¡¢B¡¢C¡¢D¡¢E¡¢F¡¢G£¬ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪ0.1s£®²âÁ¿ÆðʼµãOÖÁ¸÷¼ÆÊýµãµÄ¾àÀ룬¼ÆËã¼ÆÊýµã¶ÔӦС³µµÄ˲ʱËÙ¶È¡¢¼ÆÊýµãÓëOµãÖ®¼äµÄËÙ¶ÈÆ½·½²î¡¢ÆðʼµãOµ½¼ÆÊýµã¹ý³ÌÖÐϸÉþ¶ÔС³µ×öµÄ¹¦£®ÆäÖмÆÊýµãDµÄÈýÏîÊý¾ÝûÓмÆË㣬ÇëÍê³É¼ÆËã²¢°Ñ½á¹ûÌîÈë±í¸ñÖУ®
| µã¼£ | O | A | B | C | D | E | F | G |
| x/cm | 15.50 | 21.60 | 28.61 | 36.70 | 45.75 | 55.75 | 66.77 | |
| v/£¨m•s-1£© | -- | -- | 0.656 | 0.755 | -- | 0.953 | 1.051 | -- |
| ¡÷v2/£¨m2•S-2£© | -- | 0.430 | 0.570 | 0.908 | 1.105 | -- | ||
| W/J | 0.432 | 0.0572 | 0.0915 | 0.112 |
¢Û¸ù¾ÝͼÏó·ÖÎöµÃµ½µÄ½áÂÛWÓë¡÷v2³ÉÕý±È£®
| A£® | a¡¢b¡¢c¡¢dËĵãµç³¡Ç¿¶ÈÏàͬ | |
| B£® | Ò»µç×Ó´ÓbµãÔ˶¯µ½cµã£¬µç³¡Á¦×öµÄ¹¦Îª0.8eV | |
| C£® | ÈôÒ»µç×Ó´Ó×ó²àÑØÖÐÐÄÖáÏß´©Ô½µç³¡ÇøÓò£¬½«×ö¼ÓËÙ¶ÈÏȼõСºóÔö¼ÓµÄÖ±ÏßÔ˶¯ | |
| D£® | ËùÓдÓ×ó²àƽÐÐÓÚÖÐÐÄÖáÏß½øÈëµç³¡ÇøÓòµÄµç×Ó£¬¶¼½«»á´ÓÓÒ²àÆ½ÐÐÓÚÖÐÐÄÖáÏß´©³ö |
| A£® | 2mgh | B£® | mgh+$\frac{1}{2}$mv2 | C£® | 3mgh-$\frac{1}{2}$mv2 | D£® | $\frac{1}{2}$mv2-mgh |
| A£® | Á÷¹ýµç×èµÄµçÁ÷ÊÇ20 A | |
| B£® | Óëµç×è²¢ÁªµÄµçѹ±íµÄʾÊýÊÇ100$\sqrt{2}$V | |
| C£® | ±äѹÆ÷µÄÊäÈ빦ÂÊÊÇ1¡Ál03W | |
| D£® | ¾¹ý1·ÖÖÓµç×è·¢³öµÄÈÈÁ¿ÊÇ6¡Á103 J |