ÌâÄ¿ÄÚÈÝ
4£®»ØÐý¼ÓËÙÆ÷ÊǼÓËÙ´øµçÁ£×ӵij£ÓÃÒÇÆ÷£¬Æä½á¹¹Ê¾ÒâͼÈçͼ¼×Ëùʾ£¬ÆäÖÐÖÃÓÚ¸ßÕæ¿ÕÖеĽðÊôDÐκеİ뾶ΪR£¬Á½ºÐ¼ä¾à¼«Ð¡£¬ÔÚ×ó²àDÐκÐÔ²ÐÄ´¦·ÅÓÐÁ£×ÓÔ´S£¬ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB£¬·½ÏòÈçͼÒÒËùʾ£¨¸©ÊÓ£©£®Éè´øµçÁ£×ÓÖÊÁ¿Îªm£¬µçºÉÁ¿Îª+q£¬¸ÃÁ£×Ó´ÓÁ£×ÓÔ´S½øÈë¼ÓËٵ糡ʱµÄ³õËٶȲ»¼Æ£¬Á½½ðÊôºÐÏÁ·ì´¦¼Ó¸ßƵ½»±äµçѹ£¬¼ÓËÙµçѹ´óСU¿ÉÊÓΪ²»±ä£¬Á£×ÓÖØÁ¦²»¼Æ£¬Á£×ÓÔڵ糡ÖеļÓËÙ´ÎÊýµÈÓÚ»ØÐý°ëÖܵĴÎÊý£¬Ç󣺣¨1£©Á£×ÓÔÚ»ØÐý¼ÓËÙÆ÷Öо¹ýµÚÒ»´Î¼ÓËÙ¿ÉÒÔ´ïµ½µÄËٶȺ͵ÚÒ»´ÎÔڴų¡ÖеĻØÐý°ë¾¶£»
£¨2£©Á£×ÓÔÚµÚn´Îͨ¹ýÏÁ·ìǰºóµÄ°ë¾¶Ö®±È£»
£¨3£©Á£×ÓÈôÄÜ´ÓÉϲà±ßÔµµÄÒý³ö×°Öô¦µ¼³ö£¬ÔòRÓëU¡¢B¡¢nÖ®¼äÓ¦Âú×ãʲôÌõ¼þ£¿
·ÖÎö »ØÐý¼ÓËÙÆ÷ÔËÓõ糡¼ÓËٴų¡Æ«×ªÀ´¼ÓËÙÁ£×Ó£¬¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¿ÉÒÔÇó³öÁ£×ÓµÄ×î´óËÙ¶È£®ÔÚ¼ÓËÙÁ£×ӵĹý³ÌÖУ¬µç³¡µÄ±ä»¯ÖÜÆÚÓëÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚÏàµÈ£¬¸ù¾ÝUq=$\frac{1}{2}m{v}_{1}^{2}$ºÍBqv=m$\frac{{v}^{2}}{r}$Çó½â¸÷Ï
½â´ð ½â£º£¨1£©Á£×ÓÔÚ¼ÓËٵ糡ÖÐ×öÔȼÓËÙÔ˶¯£¬Ôڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬
¸ù¾ÝUq=$\frac{1}{2}m{v}_{1}^{2}$
v=$\sqrt{\frac{2Uq}{m}}$
¸ù¾ÝBqv=m$\frac{{v}^{2}}{r}$
r1=$\frac{\sqrt{2Uqm}}{Bq}$
£¨2£©¸ù¾ÝnUq=$\frac{1}{2}m{v}_{n}^{2}$
v=$\sqrt{\frac{2nUq}{m}}$
¸ù¾ÝBqv=m$\frac{{v}^{2}}{r}$
rn=$\sqrt{n}$$\frac{\sqrt{2Uqm}}{Bq}$
Á£×ÓÔÚµÚn´Îͨ¹ýÏÁ·ìǰºóµÄ°ë¾¶Ö®±ÈΪ$\sqrt{n-1}$£º$\sqrt{n}$
£¨3£©¸ù¾ÝBqv=m$\frac{{v}^{2}}{r}$
nUq=$\frac{1}{2}$m${v}_{m}^{2}$
Öªvm=$\frac{qBR}{m}$=$\sqrt{\frac{2nUq}{m}}$£®
´ð£º£¨1£©Á£×ÓÔÚ»ØÐý¼ÓËÙÆ÷Öо¹ýµÚÒ»´Î¼ÓËÙ¿ÉÒÔ´ïµ½µÄËÙ¶ÈΪ$\sqrt{\frac{2Uq}{m}}$£¬µÚÒ»´ÎÔڴų¡ÖеĻØÐý°ë¾¶r1=$\frac{\sqrt{2Uqm}}{Bq}$£»
£¨2£©Á£×ÓÔÚµÚn´Îͨ¹ýÏÁ·ìǰºóµÄ°ë¾¶Ö®±ÈΪ$\sqrt{n-1}$£º$\sqrt{n}$£»
£¨3£©Á£×ÓÈôÄÜ´ÓÉϲà±ßÔµµÄÒý³ö×°Öô¦µ¼³ö£¬ÔòRÓëU¡¢B¡¢nÖ®¼äÓ¦Âú×ã$\frac{qBR}{m}$=$\sqrt{\frac{2nUq}{m}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ»ØÐý¼ÓËÙÆ÷µç³¡ºÍ´Å³¡µÄ×÷Óã¬ÖªµÀ×î´óËÙ¶ÈÓëʲôÒòËØÓйأ¬ÒÔ¼°ÖªµÀÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚÓëµç³¡µÄ±ä»¯µÄÖÜÆÚÏàµÈ
| A£® | $\frac{m}{{n}^{2}}$ | B£® | $\frac{m}{n}$ | C£® | mn | D£® | $\frac{{n}^{2}}{m}$ |
| A£® | $\sqrt{\frac{{W}_{0}}{¦ÐP}}$ | B£® | $\sqrt{\frac{{W}_{0}}{4¦ÐP}}$ | C£® | $\sqrt{\frac{P}{¦Ð{W}_{0}}}$ | D£® | $\sqrt{\frac{P}{4¦Ð{W}_{0}}}$ |
| A£® | ÕâȺÇâÔ×ÓÄÜ·¢³öÈýÖÖ²»Í¬ÆµÂʵĹâ×Ó£¬ÆäÖдÓn=4ԾǨµ½n=3Ëù·¢³öµÄ¹âƵÂÊ×î¸ß | |
| B£® | ÕâȺÇâÔ×ÓÄÜ·¢³öÁùÖÖ²»Í¬ÆµÂʵĹâ×Ó£¬ÆäÖдÓn=4ԾǨµ½n=1Ëù·¢³öµÄ¹âƵÂÊ×î¸ß | |
| C£® | ÕâȺÇâÔ×ÓËùÄÜ·¢³öµÄ²»Í¬ÆµÂʵĹâ×ÓÖУ¬ÄÜʹ½ðÊôп·¢Éú¹âµçЧӦµÄ¹²ÓÐÁùÖÖ | |
| D£® | ½ðÊôп±íÃæËù·¢³öµÄ¹âµç×ÓµÄ×î´ó³õ¶¯ÄÜΪ9.41eV |
| A£® | $\frac{MF}{M+m}$ | B£® | $\frac{MF}{m}$ | C£® | $\frac{mF}{M+m}$ | D£® | $\frac{F-¦Ì£¨m+M£©g}{m+M}$M |