ÌâÄ¿ÄÚÈÝ
17£®| A£® | ¿ÉÔÚACD ÇøÓò¼ÓÊúÖ±ÏòϵÄÔÈÇ¿µç³¡ | |
| B£® | ¿ÉÔÚACD ÇøÓò¼Ó´¹Ö±Æ½ÃæÏòÀïµÄÔÈÇ¿´Å³¡ | |
| C£® | ¼Óµç³¡ºó´ÓC µãÉä³öÓë¼Ó´Å³¡ºó´ÓC µãÉä³öËùÐèʱ¼äÖ®±ÈΪ1£º2 ¦Ð | |
| D£® | Ëù¼Óµç³¡µÄµç³¡Ç¿¶ÈºÍ´Å³¡µÄ´Å¸ÐӦǿ¶ÈÖ®±ÈΪ2v0£º1 |
·ÖÎö ¸ù¾ÝÁ£×ӵį«×ª·½ÏòÅжϵ糡Á¦·½ÏòºÍÂåÂ××ÈÁ¦·½Ïò£¬·ÖÎöµç³¡µÄ·½Ïò£®ÓÉ×óÊÖ¶¨ÔòÅжϴų¡µÄ·½Ïò£®Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÔËÓ÷ֽⷨÑо¿Ê±¼äºÍµç³¡Ç¿¶È£®Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾Ý°ë¾¶¹«Ê½ºÍÖÜÆÚ¹«Ê½Ñо¿Ê±¼äºÍ´Å¸ÐӦǿ¶È£®
½â´ð ½â£ºA¡¢´øµçÁ£×Ó´¹Ö±ÉäÈëÔÈÇ¿µç³¡ºóÄÜ´ÓCµãÉä³ö³¡ÇøÓò£¬ËµÃ÷Á£×ÓÊܵ½µÄµç³¡Á¦·½ÏòÊúÖ±ÏòÏ£¬Á£×Ó´øÕýµç£¬ËùÒÔ¿ÉÔÚACD ÇøÓò¼ÓÊúÖ±ÏòϵÄÔÈÇ¿µç³¡£®¹ÊAÕýÈ·£®
B¡¢´øµçÁ£×Ó´¹Ö±ÉäÈëÔÈÇ¿´Å³¡ºóÄÜ´ÓCµãÉä³ö³¡ÇøÓò£¬Á£×ÓÔÚAµãÊܵ½µÄÂåÂ××ÈÁ¦ÊúÖ±ÏòÏ£¬ÓÉ×óÊÖ¶¨ÔòÅжÏÖª£¬¿ÉÔÚACD ÇøÓò¼Ó´¹Ö±Æ½ÃæÏòÍâµÄÔÈÇ¿´Å³¡£®¹ÊB´íÎó£®
C¡¢¼Óµç³¡Ê±£¬Á£×Óˮƽ·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬Ô˶¯Ê±¼äΪ t1=$\frac{L}{{v}_{0}}$£®¼Ó´Å³¡ºó£¬Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ô˶¯Ê±¼äΪ t2=$\frac{\frac{¦Ð}{2}L}{{v}_{0}}$=$\frac{¦ÐL}{2{v}_{0}}$
¹Êt1£ºt2=2£º¦Ð£®¹ÊC´íÎó£®
D¡¢¼Óµç³¡Ê±£ºÊúÖ±·½ÏòÓÐ L=$\frac{1}{2}a{t}_{1}^{2}$=$\frac{qE}{2m}•\frac{{L}^{2}}{{v}_{0}^{2}}$£»
¼Ó´Å³¡Ê±£¬ÓУºL=$\frac{m{v}_{0}}{qB}$£¬ÁªÁ¢½âµÃ E£ºB=2v0£º1£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºAD
µãÆÀ ½â¾ö±¾ÌâʱҪץס´øµçÁ£×ÓÔڵ糡ÖÐÀàÆ½Å×Ô˶¯µÄÑо¿·½·¨ÊÇ£ºÔ˶¯µÄ·Ö½â·¨£¬¶ø´øµçÁ£×ÓÔڴų¡ÖÐÔ²ÖÜÔ˶¯µÄÑо¿·½·¨ÊÇ»³ö¹ì¼££¬¸ù¾ÝÔ²ÖÜÔ˶¯µÄ¹æÂÉÑо¿£®
| A£® | ÍÆÁ¦F¿ÉÒÔΪÈÎÒâÖµ | B£® | FÔö´óÊ±Ð±Ãæ¶ÔÇòµÄÖ§³ÖÁ¦Ôö´ó | ||
| C£® | FÔö´óʱǽ¶ÔÇòµÄÖ§³ÖÁ¦Ôö´ó | D£® | FÔö´óʱ£¬µØÃæ¶ÔÐ±ÃæµÄÖ§³ÖÁ¦Ôö´ó |
| A£® | ËüÃÇÔËÐеÄÖÜÆÚÖ®±ÈT1£ºT2=2£º1 | |
| B£® | ËüÃÇÔËÐеĹìµÀ°ë¾¶Ö®±Èr1£ºr2=4£º1 | |
| C£® | ËüÃÇÔËÐеÄÏòÐļÓËÙ¶ÈÖ®±Èa1£ºa2=1£º16 | |
| D£® | ËüÃÇÔËÐÐËùÐèÏòÐÄÁ¦Ö®±ÈF1£ºF2=1£º32 |
| A£® | ¹ìµÀ°ë¾¶Ô½´ó£¬ÖÜÆÚÔ½³¤ | |
| B£® | ÕŽÇÔ½´ó£¬ËÙ¶ÈÔ½´ó | |
| C£® | Èô²âµÃÖÜÆÚºÍÕŽǣ¬Ôò¿ÉµÃµ½ÐÇÇòµÄƽ¾ùÃÜ¶È | |
| D£® | Èô²âµÃÖÜÆÚºÍ¹ìµÀ°ë¾¶£¬Ôò¿ÉµÃµ½ÐÇÇòµÄƽ¾ùÃÜ¶È |
| A£® | СÇò¼ÓËÙ¶ÈÒ»Ö±Ôö´ó | B£® | СÇòËÙ¶ÈÒ»Ö±Ôö´ó£¬Ö±µ½×îºóÔÈËÙ | ||
| C£® | ¸Ë¶ÔСÇòµÄµ¯Á¦ÏȼõСºó·´ÏòÔö´ó | D£® | СÇòËùÊÜÂåÂ××ÈÁ¦Ò»Ö±Ôö´ó |
| A£® | BÎÀÐǵĹìµÀ°ë¾¶Îªr1£¨$\frac{{T}_{1}}{{T}_{2}}$£©${\;}^{\frac{2}{3}}$ | |
| B£® | AÎÀÐǵĻúеÄÜÒ»¶¨´óÓÚBÎÀÐǵĻúеÄÜ | |
| C£® | A¡¢BÎÀÐÇÔÚ¹ìµÀÉÏÔËÐÐʱ´¦ÓÚÍêÈ«Ê§ÖØ×´Ì¬£¬²»ÊÜÈκÎÁ¦µÄ×÷Óà | |
| D£® | ijʱ¿ÌÎÀÐÇA¡¢BÔÚ¹ìµÀÉÏÏà¾à×î½ü£¬´Ó¸Ãʱ¿ÌÆðÿ¾¹ý$\frac{{T}_{1}{T}_{2}}{{T}_{1}-{T}_{2}}$ʱ¼ä£¬ÎÀÐÇA¡¢BÔÙ´ÎÏà¾à×î½ü |
| A£® | £¨$\frac{GM{T}^{2}}{4{¦Ð}^{2}{R}^{3}}$-1£©F | B£® | £¨1-$\frac{4{¦Ð}^{2}{R}^{3}}{GM{T}^{2}}$£©F | C£® | £¨$\frac{4{¦Ð}^{2}{R}^{3}}{GM{T}^{2}}$-1£©F | D£® | £¨1-$\frac{GM{T}^{2}}{4{¦Ð}^{2}{R}^{3}}$£©F |