题目内容
8.分析 球A与球B同时释放,同时落地,由于B球做自由落体运动,A球做平抛运动,说明A球的竖直分运动与B球相同,从而即可求解.
解答 解:球A与球B同时释放,同时落地,时间相同;
A球做平抛运动,B球做自由落体运动;
将球A的运动沿水平方向和竖直方向正交分解,两个分运动同时发生,具有等时性,因而A球的竖直分运动与B球时间相等,改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两个小球总是同时落地,说明在任意时刻在两球同一高度,即A球的竖直分运动与B球完全相同,说明了平抛运动的竖直分运动是自由落体运动.
故答案为:自由落体运动.
点评 本题关键将平抛运动正交分解后抓住题中的“改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两个小球总是同时落地”,得出A球的竖直分运动与B球的运动相同.
练习册系列答案
相关题目
18.甲、乙两物体都做匀速圆周运动,其质量之比为2:1,转动半径之比为2:1,在相等时间里甲转过45°,乙转过60°,则它们所受外力的合力之比为( )
| A. | 4:1 | B. | 9:4 | C. | 3:2 | D. | 16:9 |
19.
如图所示,一带电油滴悬浮在平行板电容器两极板A、B之间的P点,处于静止状态.现将极板A向下平移一小段距离,但仍在P点上方,其它条件不变.下列说法中正确的是( )
| A. | 液滴将向下运动 | B. | 液滴不动 | ||
| C. | 极板带电荷量将增加 | D. | 极板带电荷量将减少 |
16.
如图是德国物理学家史特恩设计的最早测定气体分子速率的示意图:M、N是两个共轴圆筒,外筒半径为R,内筒半径很小可忽略,筒的两段封闭,两筒之间抽成真空,两筒以相同角速度ω绕O匀速转动,M 筒开有与转轴平行的狭缝S,且不断沿半径方向向外射出速率为v1和v2的分子,分子到达N筒后被吸附,如果R、v1、v2保持不变,ω取一合适值,则( )
| A. | 当|$\frac{R}{{v}_{1}}-\frac{R}{{v}_{2}}$|=n$\frac{2π}{ω}$时,分子落在同一狭条上(n取正整数) | |
| B. | 当$\frac{R}{{v}_{1}}+2\frac{R}{{v}_{2}}=n\frac{2π}{ω}$时,分子落在同一个狭条上(n取正整数) | |
| C. | 只要时间足够长,N筒上到处都落有分子 | |
| D. | 分子不可能落在N筒上某两处且与S平行的狭条上 |
13.人造地球卫星在运行中,由于受到稀薄大气的阻力作用,其运动轨道半径会逐渐减小,在此过程中,以下说法中正确的是( )
| A. | 卫星的速率将增大 | B. | 卫星的周期将增大 | ||
| C. | 卫星的向心加速度将增大 | D. | 卫星的角速度将减小 |
20.
如图所示,劲度数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变.用水平力F缓慢推动物体,在弹性限度内弹簧长度被压缩了x0,此时物体静止.撤去F后,物体开始向左运动,运动的最大距离为4x0.物体与水平面间的动摩擦因数为μ,重力加速度为g.则( )
| A. | 撤去F后,物体先做匀加速运动,再做匀减速运动 | |
| B. | 撤去F后,物体刚运动时的加速度大小为$\frac{k{x}_{0}}{m}$+μg | |
| C. | 物体做匀减速运动的时间为2$\sqrt{\frac{{x}_{0}}{μg}}$ | |
| D. | 物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg(x0-$\frac{μmg}{k}$) |