题目内容

7.如图所示,让物体分别同时从竖直圆上的P1、P2处由静止开始下滑,沿光滑的弦轨道P1A、
P2A滑到A处,P1A、P2A与竖直直径的夹角分别为θ1、θ2.则(  )
A.若两物体质量相同,则两物体所受的合外力之比为cosθ1:cosθ2
B.物体沿P1A、P2A下滑加速度之比为sinθ1:sinθ2
C.物体沿P1A、P2A下滑到A处的速度之比为cosθ1:cosθ2
D.物体沿P1A、P2A下滑的时间之比为1:1

分析 对物体受力分析求出物体所受的合外力,根据牛顿第二定律求出下滑的加速度;
通过位移以及加速度,根据位移时间公式求出运动的时间,从而得出末速度,然后进行比较得出答案.

解答 解:A、设两物体质量为m,物体受重力和支持力作用,
根据力的平衡条件可得,物体所受的合外力:
F合1=mgsin(90°-θ1)=mgcosθ1
F合2=mgsin(90°-θ2)=mgcosθ2
则两物体所受的合外力之比:
F合1:F合2=mgcosθ1:mgcosθ2=cosθ1:cosθ2,故A正确;
B、由牛顿第二定律得,
F合1=mgcosθ1=ma1
F合2=mgcosθ2=ma2
则物体沿P1A、P2A下滑加速度之比:
a1:a2=cosθ1:cosθ2,故B错误;
D、物体的位移x=2Rcosθ,加速度a=gcosθ,
由位移时间公式得,2Rcosθ=$\frac{1}{2}$gcosθt2
解得t=$\sqrt{\frac{4R}{g}}$,与夹角无关,
故物体沿P1A、P2A下滑的时间之比:
t1:t2=1:1,故D正确;
C、由速度时间公式v=at得,物体沿P1A、P2A下滑到A处的速度之比:
v1:v2=cosθ1:cosθ2,故C正确.
故选:ACD.

点评 本题综合考查了牛顿第二定律和运动学公式相关应用,知道加速度是联系力学和运动学的桥梁.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网