题目内容

精英家教网如图所示,一小球从斜轨道的某高度处由静止滑下,然后沿竖直光滑轨道的内侧运动.已知圆轨道的半径为R,忽略一切摩擦阻力.则下列说法正确的是(  )
A、在轨道最低点、最高点,轨道对小球作用力的方向是相同的B、小球的初位置比圆轨道最低点高出2R时,小球能通过圆轨道的最高点C、小球的初位置比圆轨道最低点高出0.5R时,小球在运动过程中能不脱离轨道D、小球的初位置只有比圆轨道最低点高出2.5R时,小球在运动过程中才能不脱离轨道
分析:使小球能够通过圆轨道最高点,那么小球在最高点时应该是恰好是物体的重力作为物体的向心力,由向心力的公式可以求得此时的最小的速度,再由机械能守恒可以求得离最低点的高度h.
解答:解:A、小球在最高点时,若受弹力,则弹力一定竖直向上;而在最低点,支持力与重力的合力充当向心力,故作用力一定向上,故A错误;
B、要使小球能通过最高点,则在最高点处应有:mg=m
v2
R
;再由机械能守恒定律可知mgh=mg2R+
1
2
mv2;解得小球初位置的高度至少为h=
5
2
R;故小球高出2.5R时,小球才能通过最高点,故B错误;
C、若小球距最低点高出0.5R时,由机械能守恒可知,小球应到达等高的地方,即0.5R处,小球受到圆轨道的支持,不会脱离轨道,故C正确;
D、由C的分析可知,若小球的初位置低于0.5R时,也不会脱离轨道,故D错误;
故选:C.
点评:本题考查机械能守恒及向心力公式,明确最高点的临界速度,并注意小球在轨道内不超过R时也不会离开轨道.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网