ÌâÄ¿ÄÚÈÝ
3£®£¨1£©³¡Ç¿EµÄ´óСºÍÁ£×Ó¾¹ýOµãʱËÙ¶Èv£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶ÈB£»
£¨3£©Á£×ÓÔÚ¸ÃÇøÓòÔ˶¯µÄ×Üʱ¼ä£®
·ÖÎö £¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢·ÖÎ»ÒÆ¹«Ê½ºÍ¼¸ºÎ¹ØÏµ½áºÏÇó½â£®
£¨2£©»³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬ÓÉÊýѧ֪ʶÇó¹ì¼£°ë¾¶£¬ÔÙÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó´Å¸ÐӦǿ¶ÈB£®
£¨3£©ÏÈÓɵÚ1СÌâÇó³öÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä£®Ôڴų¡ÖУ¬Óɹ켣¶ÔÓ¦µÄÔ²ÐĽÇÇóʱ¼ä£¬´Ó¶øµÃµ½×Üʱ¼ä£®
½â´ð
½â£º£¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬¼ÓËÙ¶ÈΪ a=$\frac{qE}{m}$
ˮƽ·½ÏòÓÐ L=v0t
ÊúÖ±·½ÏòÓÐ $\frac{1}{2}$L=$\frac{1}{2}a{t}^{2}$
ÁªÁ¢½âµÃ E=$\frac{m{v}_{0}^{2}}{qL}$
Á£×Ó¾¹ýOµãʱÊúÖ±·ÖËÙ¶ÈΪvy£¬ÔòÓÐ $\frac{{v}_{y}}{2}$t=$\frac{1}{2}L$
ÓÖ L=v0t
¶Ô±È¿ÉµÃ vy=v0
ÔòÁ£×Ó¾¹ýOµãʱËÙ¶È v=$\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}$=$\sqrt{2}{v}_{0}$£¬·½ÏòÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ45¡ã£®
£¨2£©»³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬Éè¹ì¼£°ë¾¶Îªr£®Óɼ¸ºÎ¹ØÏµ¿ÉÖª£ºÁ£×ÓÔڴų¡ÖÐת¹ýµÄÔ²ÐĽÇΪ45¡ã£®
ÔòÓÐ sin45¡ã=$\frac{\frac{1}{2}L}{r}$
¿ÉµÃ r=$\frac{\sqrt{2}}{2}$L
Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
qvB=m$\frac{{v}^{2}}{r}$
½âµÃ B=$\frac{2m{v}_{0}}{qL}$
£¨3£©ÓɵÚ1СÌâÖª£¬´øµçÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä t=$\frac{L}{{v}_{0}}$
Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä t¡ä=$\frac{1}{8}$T=$\frac{1}{8}$•$\frac{2¦Ðm}{qB}$=$\frac{¦ÐL}{4{v}_{0}}$
¹ÊÁ£×ÓÔÚ¸ÃÇøÓòÔ˶¯µÄ×Üʱ¼ä t×Ü=t+t¡ä=$\frac{£¨4+¦Ð£©L}{4{v}_{0}}$
´ð£º
£¨1£©³¡Ç¿EµÄ´óСÊÇ$\frac{m{v}_{0}^{2}}{qL}$£¬Á£×Ó¾¹ýOµãʱËÙ¶ÈvÊÇ$\sqrt{2}{v}_{0}$£¬·½ÏòÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ45¡ã£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶ÈBÊÇ$\frac{2m{v}_{0}}{qL}$£»
£¨3£©Á£×ÓÔÚ¸ÃÇøÓòÔ˶¯µÄ×Üʱ¼äÊÇ$\frac{£¨4+¦Ð£©L}{4{v}_{0}}$£®
µãÆÀ ±¾ÌâµÄ¹Ø¼üÒªÕÆÎÕ´øµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖеÄÀàÆ½Å×Ô˶¯µÄÑо¿·½·¨£ºÔ˶¯µÄ·Ö½â·¨£¬ÕÆÎÕÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔÈËÙÔ²ÖÜÔ˶¯µÄÑо¿·½·¨£º»¹ì¼££¬ÔËÓÃÊýѧ֪ʶÇó¹ì¼£°ë¾¶£®
| A£® | 3m/s£¬5m/s£¬7m/s | B£® | 3m/s£¬7m/s£¬11m/s | C£® | 2m/s£¬6m/s£¬10m/s | D£® | 4m/s£¬6m/s£¬8m/s |
| A£® | бÏòÉÏ·½·¢ÉäµÄ̽¿Õ»ð¼ý | |
| B£® | ÇòÔ˶¯Ô±Ô¶ÉäÌß³öµÄ¸ßËÙÐýתµÄ¡°Ïã½¶Çò¡±ÑØÆæÃîµÄ»¡Ïß·ÉÈëÇòÃÅ | |
| C£® | Ò¦Ã÷¹´ÊÖͶÀºÊ±Å׳öµÄÀºÇò | |
| D£® | ÊÂÑÝϰÖз¢ÉäµÄµ¼µ¯ |
| A£® | ÎïÌåËùÊÜ»¬¶¯Ä¦²ÁÁ¦´óСΪ20 N£¬·½ÏòˮƽÏòÓÒ | |
| B£® | ÎïÌåËùÊÜ»¬¶¯Ä¦²ÁÁ¦´óСΪ20 N£¬·½ÏòˮƽÏò×ó | |
| C£® | ÎïÌåµÄ¼ÓËÙ¶È´óСΪ4 m/s2£¬·½ÏòˮƽÏòÓÒ | |
| D£® | ÎïÌåµÄ¼ÓËÙ¶ÈΪÁã |