ÌâÄ¿ÄÚÈÝ

6£®ÈçͼËùʾ£¬ÔÚxOy×ø±êϵÖУ¬µÚÒ»ÏóÏÞÄÚÓÐÑØyÖḺ·½ÏòµÄÔÈÇ¿µç³¡£¬³¡Ç¿´óСΪE£¬ÔÚµÚËÄÏóÏÞÓÐÒ»°ë¾¶ÎªRµÄ°ëÔ²ÐεÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óСΪB£¬·½Ïò´¹Ö±ÓÚxOyÆ½ÃæÏòÀ°ëÔ²µÄÖ±¾¶OAÔÚxÖáÉÏ£¬Ò»ÖÊÁ¿Îªm£¬µçÁ¿ÎªqµÄ´øÕýµçµÄÁ£×ÓÔÚ¹ý°ëÔ²µÄÔ²ÐÄO¡äÇÒÆ½ÐÐÓÚyÖáµÄÖ±ÏßMNÉÏ£¬´øµçÁ£×ÓÓɾ²Ö¹Êͷźó£¬Ôڵ糡Á¦×÷ÓÃϼÓËÙ½øÈë´Å³¡£¬×îÖÕÆ½ÐÐÓÚxÖá³ö´Å³¡£¬²»¼ÆÁ£×ÓµÄÖØÁ¦£¬Çó£º
£¨1£©Á£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄ×ø±ê£¨x1£¬y1£©
£¨2£©ÒªÊ¹Á£×ӸպôÓAµã·É³ö´Å³¡£¬Ôò´ÓÊͷŵ½AµãËùÐèÒªµÄʱ¼äΪ¶àÉÙ£¿
£¨3£©Èô½«¸ÃÁ£×Ó·ÅÔÚyÖáÉÏ£¨O£¬y1£©µã£¬²¢ÒÔÒ»³õËÙ¶ÈÑØxÖáÕýÏò·É½øµç³¡£¬¾­¹ýµç³¡Æ«×ªÔÙ¾­´Å³¡Æ«×ª¸ÕºÃµ½´ïAµã£¬Ôò³õËÙ¶Èv0¶à´ó£¿

·ÖÎö £¨1£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³öÁ£×ÓÔڵ糡ÖмÓËÙµÄÄ©Ëٶȱí´ïʽ£¬½áºÏ°ë¾¶¹«Ê½ºÍ¼¸ºÎ¹ØÏµÇó³öy1µÄ´óС£¬´Ó¶øµÃ³öÁ£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄ×ø±ê£®
£¨2£©ÒªÊ¹Á£×ÓÄÜ´ÓAµã·É³ö´Å³¡£¬µ½Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶R2¸ÃÂú×ãµÄÌõ¼þR=n•2R2£¬n=1£¬2£¬3£®½áºÏ°ë¾¶¹«Ê½¡¢ÖÜÆÚ¹«Ê½ÒÔ¼°¶¯Äܶ¨ÀíÇó³ö´ÓÊͷŵ½AµãËùÐèÒªµÄʱ¼ä£®
£¨3£©×÷³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öÁ£×ӷɳö´Å³¡µÄʱ¼ä£¬Çó³öÁ£×ÓÔڵ糡ÖеÄË®Æ½Î»ÒÆºÍÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶£¬Í¨¹ý¼¸ºÎ¹ØÏµÇó³ö³õËٶȵĴóС£®

½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖмÓËÙ£¬$qE{y}_{1}=\frac{1}{2}m{{v}_{1}}^{2}$£¬
Á£×ÓÔڴų¡ÖÐÆ«×ª£¬Ô²ÐÄÔÚxÖáÉÏ£¬$q{v}_{1}B=m\frac{{{v}_{1}}^{2}}{{R}_{1}}$£¬
Óɼ¸ºÎ¹ØÏµµÃ£¬$\sqrt{2}{R}_{1}=R$£¬
½âµÃ${y}_{1}=\frac{q{B}^{2}{R}^{2}}{4mE}$£¬
Òò´ËÁ£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄλÖÃ×ø±êΪ$£¨R£¬\frac{q{B}^{2}{R}^{2}}{4mE}£©$£®
£¨2£©ÒªÊ¹Á£×ÓÄÜ´ÓAµã·É³ö´Å³¡£¬µ½Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶R2¸ÃÂú×ãµÄÌõ¼þR=n•2R2£¬n=1£¬2£¬3£®
Á£×ÓÔڵ糡ÖмÓËÙ$qE{y}_{2}=\frac{1}{2}m{{v}_{2}}^{2}$£¬
Á£×ÓÔڴų¡ÖÐÆ«×ª£¬Ô²ÐÄÔÚxÖáÉÏ£¬$q{v}_{2}B=m\frac{{{v}_{2}}^{2}}{{R}_{2}}$£¬
Á£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä${t}_{1}=£¨2n-1£©\sqrt{\frac{2{y}_{2}m}{qE}}$£¬
Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä${t}_{2}=n\frac{¦Ðm}{qB}$£¬
Òò´ËÔ˶¯µÄ×Üʱ¼ät=t1+t2=$£¨2n-1£©\sqrt{\frac{2{y}_{2}m}{qE}}+n\frac{¦Ðm}{qB}$=$\frac{2n-1}{2n}\frac{BR}{E}+n\frac{¦Ðm}{qB}$£¬n=1£¬2£¬3£®
£¨3£©Á£×Ӵӷɳöµ½´ï´Å³¡ËùÓõÄʱ¼ä
$t¡ä=\sqrt{\frac{2{y}_{1}m}{qE}}=\frac{BR}{\sqrt{2}E}$£¬
Ôڵ糡ÖеÄË®Æ½Î»ÒÆ$x={v}_{0}t¡ä=\frac{BR{v}_{0}}{\sqrt{2}E}$£¬
ÉèÁ£×Ó½øÈë´Å³¡Ê±ËÙ¶ÈΪv£¬ÔòÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶r=$\frac{mv}{qB}$£¬
¸ù¾Ý¼¸ºÎ¹ØÏµ$\frac{{v}_{1}}{v}=\frac{2R-x}{2r}$
½âµÃ${v}_{0}=\frac{2£¨\sqrt{2}-1£©E}{B}$£®
´ð£º£¨1£©Á£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄ×ø±ê£¨x1£¬y1£©Îª$£¨R£¬\frac{q{B}^{2}{R}^{2}}{4mE}£©$£®
£¨2£©ÒªÊ¹Á£×ӸպôÓAµã·É³ö´Å³¡£¬Ôò´ÓÊͷŵ½AµãËùÐèÒªµÄʱ¼äΪ$\frac{2n-1}{2n}\frac{BR}{E}+n\frac{¦Ðm}{qB}$£¬n=1£¬2£¬3
£¨3£©³õËÙ¶Èv0Ϊ$\frac{2£¨\sqrt{2}-1£©E}{B}$£®

µãÆÀ Á£×ÓÔڵ糡ÖÐÔ˶¯Æ«×ªºÍ¼ÓËÙʱ£¬³£ÓÃÄÜÁ¿µÄ¹ÛµãÀ´½â¾öÎÊÌ⣬ÓÐʱҲҪÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â£®Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÔ²ÐÄ¡¢°ë¾¶¼°Ô˶¯Ê±¼äµÄÈ·¶¨Ò²ÊDZ¾ÌâµÄÒ»¸ö¿¼²éÖØµã£¬ÒªÕýÈ·»­³öÁ£×ÓÔ˶¯µÄ¹ì¼£Í¼£¬ÄÜÊìÁ·µÄÔËÓü¸ºÎ֪ʶ½â¾öÎïÀíÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø