ÌâÄ¿ÄÚÈÝ
6£®£¨1£©Á£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄ×ø±ê£¨x1£¬y1£©
£¨2£©ÒªÊ¹Á£×ӸպôÓAµã·É³ö´Å³¡£¬Ôò´ÓÊͷŵ½AµãËùÐèÒªµÄʱ¼äΪ¶àÉÙ£¿
£¨3£©Èô½«¸ÃÁ£×Ó·ÅÔÚyÖáÉÏ£¨O£¬y1£©µã£¬²¢ÒÔÒ»³õËÙ¶ÈÑØxÖáÕýÏò·É½øµç³¡£¬¾¹ýµç³¡Æ«×ªÔÙ¾´Å³¡Æ«×ª¸ÕºÃµ½´ïAµã£¬Ôò³õËÙ¶Èv0¶à´ó£¿
·ÖÎö £¨1£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³öÁ£×ÓÔڵ糡ÖмÓËÙµÄÄ©Ëٶȱí´ïʽ£¬½áºÏ°ë¾¶¹«Ê½ºÍ¼¸ºÎ¹ØÏµÇó³öy1µÄ´óС£¬´Ó¶øµÃ³öÁ£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄ×ø±ê£®
£¨2£©ÒªÊ¹Á£×ÓÄÜ´ÓAµã·É³ö´Å³¡£¬µ½Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶R2¸ÃÂú×ãµÄÌõ¼þR=n•2R2£¬n=1£¬2£¬3£®½áºÏ°ë¾¶¹«Ê½¡¢ÖÜÆÚ¹«Ê½ÒÔ¼°¶¯Äܶ¨ÀíÇó³ö´ÓÊͷŵ½AµãËùÐèÒªµÄʱ¼ä£®
£¨3£©×÷³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öÁ£×ӷɳö´Å³¡µÄʱ¼ä£¬Çó³öÁ£×ÓÔڵ糡ÖеÄË®Æ½Î»ÒÆºÍÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶£¬Í¨¹ý¼¸ºÎ¹ØÏµÇó³ö³õËٶȵĴóС£®
½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖмÓËÙ£¬$qE{y}_{1}=\frac{1}{2}m{{v}_{1}}^{2}$£¬![]()
Á£×ÓÔڴų¡ÖÐÆ«×ª£¬Ô²ÐÄÔÚxÖáÉÏ£¬$q{v}_{1}B=m\frac{{{v}_{1}}^{2}}{{R}_{1}}$£¬
Óɼ¸ºÎ¹ØÏµµÃ£¬$\sqrt{2}{R}_{1}=R$£¬
½âµÃ${y}_{1}=\frac{q{B}^{2}{R}^{2}}{4mE}$£¬
Òò´ËÁ£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄλÖÃ×ø±êΪ$£¨R£¬\frac{q{B}^{2}{R}^{2}}{4mE}£©$£®
£¨2£©ÒªÊ¹Á£×ÓÄÜ´ÓAµã·É³ö´Å³¡£¬µ½Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶R2¸ÃÂú×ãµÄÌõ¼þR=n•2R2£¬n=1£¬2£¬3£®
Á£×ÓÔڵ糡ÖмÓËÙ$qE{y}_{2}=\frac{1}{2}m{{v}_{2}}^{2}$£¬
Á£×ÓÔڴų¡ÖÐÆ«×ª£¬Ô²ÐÄÔÚxÖáÉÏ£¬$q{v}_{2}B=m\frac{{{v}_{2}}^{2}}{{R}_{2}}$£¬
Á£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ä${t}_{1}=£¨2n-1£©\sqrt{\frac{2{y}_{2}m}{qE}}$£¬
Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä${t}_{2}=n\frac{¦Ðm}{qB}$£¬
Òò´ËÔ˶¯µÄ×Üʱ¼ät=t1+t2=$£¨2n-1£©\sqrt{\frac{2{y}_{2}m}{qE}}+n\frac{¦Ðm}{qB}$=$\frac{2n-1}{2n}\frac{BR}{E}+n\frac{¦Ðm}{qB}$£¬n=1£¬2£¬3£®![]()
£¨3£©Á£×Ӵӷɳöµ½´ï´Å³¡ËùÓõÄʱ¼ä
$t¡ä=\sqrt{\frac{2{y}_{1}m}{qE}}=\frac{BR}{\sqrt{2}E}$£¬
Ôڵ糡ÖеÄË®Æ½Î»ÒÆ$x={v}_{0}t¡ä=\frac{BR{v}_{0}}{\sqrt{2}E}$£¬
ÉèÁ£×Ó½øÈë´Å³¡Ê±ËÙ¶ÈΪv£¬ÔòÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶r=$\frac{mv}{qB}$£¬
¸ù¾Ý¼¸ºÎ¹ØÏµ$\frac{{v}_{1}}{v}=\frac{2R-x}{2r}$
½âµÃ${v}_{0}=\frac{2£¨\sqrt{2}-1£©E}{B}$£®
´ð£º£¨1£©Á£×Ó¸Õ¿ªÊ¼ÊÍ·ÅʱµÄ×ø±ê£¨x1£¬y1£©Îª$£¨R£¬\frac{q{B}^{2}{R}^{2}}{4mE}£©$£®
£¨2£©ÒªÊ¹Á£×ӸպôÓAµã·É³ö´Å³¡£¬Ôò´ÓÊͷŵ½AµãËùÐèÒªµÄʱ¼äΪ$\frac{2n-1}{2n}\frac{BR}{E}+n\frac{¦Ðm}{qB}$£¬n=1£¬2£¬3
£¨3£©³õËÙ¶Èv0Ϊ$\frac{2£¨\sqrt{2}-1£©E}{B}$£®
µãÆÀ Á£×ÓÔڵ糡ÖÐÔ˶¯Æ«×ªºÍ¼ÓËÙʱ£¬³£ÓÃÄÜÁ¿µÄ¹ÛµãÀ´½â¾öÎÊÌ⣬ÓÐʱҲҪÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â£®Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÔ²ÐÄ¡¢°ë¾¶¼°Ô˶¯Ê±¼äµÄÈ·¶¨Ò²ÊDZ¾ÌâµÄÒ»¸ö¿¼²éÖØµã£¬ÒªÕýÈ·»³öÁ£×ÓÔ˶¯µÄ¹ì¼£Í¼£¬ÄÜÊìÁ·µÄÔËÓü¸ºÎ֪ʶ½â¾öÎïÀíÎÊÌ⣮
| A£® | µçÔ´A¶ËΪÕý¼«¡¢B¶ËΪ¸º¼«£¬ÏßȦÓÒ¶ËΪS¼«£¬×ó¶ËΪN¼« | |
| B£® | µçÔ´A¶ËΪ¸º¼«¡¢B¶ËΪÕý¼«£¬ÏßȦÓÒ¶ËΪS¼«£¬×ó¶ËΪN¼« | |
| C£® | µçÔ´A¶ËΪ¸º¼«¡¢B¶ËΪÕý¼«£¬ÏßȦÓÒ¶ËΪN¼«£¬×ó¶ËΪS¼« | |
| D£® | µçÔ´A¶ËΪÕý¼«¡¢B¶ËΪ¸º¼«£¬ÏßȦÓÒ¶ËΪN¼«£¬×ó¶ËΪS¼« |
| A£® | BÇòÊܵ½µÄµç³¡Á¦´óСΪmBgsin¦È | |
| B£® | µ±³¡Ç¿Ôö´óʱ£¬ÇáÖÊÉþ¶ÔBÇòµÄÀÁ¦ÈÔ±£³Ö²»±ä | |
| C£® | µ±³¡Ç¿Ôö´óʱ£¬¸Ë¶ÔA»·µÄĦ²ÁÁ¦±£³Ö²»±ä | |
| D£® | µ±³¡Ç¿Ôö´óʱ£¬¸Ë¶ÔA»·µÄÖ§³ÖÁ¦±£³Ö²»±ä |
| A£® | ¼×¡¢ÒÒ¶¼Ñظº·½ÏòÔ˶¯ | |
| B£® | ¼×¡¢ÒÒÔÚÔ˶¯¹ý³ÌÖÐÒ»¶¨»áÏàÓö | |
| C£® | ¼×¡¢ÒÒÔÚt0ʱ¿ÌÏà¾à×îÔ¶ | |
| D£® | ÒÒÔ˶¯µÄʱ¼äÒ»¶¨ÊǼ×Ô˶¯µÄʱ¼äµÄ2±¶ |