题目内容

8.如图所示,有一内壁光滑的试管装有一质量为100g的小球,试管的开口端封闭后安装在水平轴O上,转动轴到管底小球的距离为5cm,让试管在竖直平面内做匀速转动.g取10m/s2
(1)若试管底部受到小球的压力的最大值为最小值的3倍,则试管转动的角速度多大?
(2)若转速ω=10$\sqrt{2}$rad/s,则管底对小球的作用力的最大值和最小值各是多少?

分析 (1)当小球在最低点时,小球对管底的压力最大,在最高点时,小球对管底的压力最小,根据牛顿第二定律,通过压力的关系,求出角速度的大小.
(2)当转速ω=10$\sqrt{2}$rad/s时,判断小球在最高点是否脱离,根据牛顿第二定律求出管底对小球的最大作用力和最小作用力.

解答 解:(1)在最低点时,根据牛顿第二定律有:N1-mg=mrω2
解得:N1=mg+mrω2
在最高点,根据牛顿第二定律有:N2+mg=mrω2
解得:N2=mrω2-mg
因为N1=3N2
联立三式,代入数据解得:
ω=20rad/s.
(2)根据牛顿第二定律得,在最高点有:N2+mg=mrω2
解得N2=mrω2-mg=0.1×0.05×200-1N=0N.
在最低点时,根据牛顿第二定律有:N1-mg=mrω2
解得N1=mg+mrω2=1+0.1×0.05×200N=2N.
答:(1)此时角速度为20rad/s.
(2)管底对小球作用力的最大值为2N,最小值为0N.

点评 解决本题的关键知道向心力的来源,结合牛顿第二定律进行求解,知道在最高点压力最小,在最低点压力最大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网