ÌâÄ¿ÄÚÈÝ
5£®£¨1£©ÇóСÇòËù´øµçµÄµçÐÔ£®
£¨2£©Çóµç³¡Ç¿¶ÈµÄ´óС£®
£¨3£©½«¸ËÀÖÁˮƽλÖÃOB£¬ÔÚ´Ë´¦½«Ð¡Çò×ÔÓÉÊÍ·Å£®Çó¸ËÔ˶¯µ½ÊúֱλÖÃOCʱСÇòµÄËÙ¶È´óСÒÔ¼°¸Ë¶ÔСÇòµÄÀÁ¦´óС£®
·ÖÎö ¸ù¾Ý¹²µãÁ¦Æ½ºâÇó³öµç³¡Á¦µÄ·½Ïò£¬ÔÚÓɵ糡ǿ¶È·½ÏòÅжϵçÐÔ£¬´Ó¶øµÃ³öµç³¡Ç¿¶ÈµÄ´óС£®
¸ù¾Ý¶¯Äܶ¨ÀíÇó³öСÇòÔ˶¯µ½×îµÍµãµÄËÙ¶È£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¸Ë¶ÔСÇòµÄÀÁ¦´óС£®
½â´ð ½â£º£¨1£©¸ù¾Ý¹²µãÁ¦Æ½ºâÖªµç³¡Á¦µÄ·½ÏòˮƽÏòÓÒ£¬Çҵ糡·½ÏòҲˮƽÏòÓÒ£¬¹ÊСÇò´øÕýµç
¶ÔСÇò£¬Ë®Æ½·½Ïò T sin¦È=Eq
¼áÖ±·½Ïò Tcos¦È=mg
½âµÃ£ºE=$\frac{mgtan¦È}{q}$
£¨2£©Óɶ¯Äܶ¨ÀíÓÐ mgL+EqL=$\frac{1}{2}$mv2£¬
v=$\sqrt{2gL£¨1+tan¦È£©}$
£¨3£©ÔÚC´¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºF-mg=m$\frac{v^2}{L}$
½âµÃ£ºF=mg£¨3+2tan¦È£©
´ð£º£¨1£©Ð¡ÇòËù´øÕýµç£®
£¨2£©µç³¡Ç¿¶ÈµÄ´óС$\frac{mgtan¦È}{q}$£®
£¨3£©¸ËÔ˶¯µ½ÊúֱλÖÃOCʱСÇòµÄËÙ¶È´óСÒÔ¼°¸Ë¶ÔСÇòµÄÀÁ¦´óСmg£¨3+2tan¦È£©£®
µãÆÀ ±¾Ì⿼²éÁ˹²µãÁ¦Æ½ºâ¡¢Å£¶ÙµÚ¶þ¶¨ÂɺͶ¯Äܶ¨ÀíµÄ×ۺϣ¬ÖªµÀСÇò×öÔ²ÖÜÔ˶¯ÏòÐÄÁ¦µÄÀ´Ô´£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£®
| A£® | Öʵã2sÄ©ËÙ¶ÈÊÇ2$\sqrt{13}$m/s | |
| B£® | Öʵã×öÔȱäËÙÇúÏßÔ˶¯ | |
| C£® | ÖʵãËùÊܵĺÏÍâÁ¦ÊÇ3N | |
| D£® | ÖʵãµÄ³õËٶȵķ½ÏòÓëºÏÍâÁ¦·½Ïò´¹Ö± |
| A£® | ǰ3s×öÔȱäËÙÖ±ÏßÔ˶¯ | |
| B£® | µÚ3sÄں͵Ú4sÄڵļÓËÙ¶ÈÏàͬ | |
| C£® | µÚ1sÄں͵Ú3sÄÚµÄÔ˶¯·½ÏòÏà·´ | |
| D£® | 0¡«2sÄÚºÍ0¡«4sÄ򵀮½¾ùËÙ¶È´óСÏàµÈ |
| A£® | ͼ¢ÙÖÐÑо¿Í¶³öµÄÀºÇòÔ˶¯¹ì¼£Ê±¿É½«ÀºÇò¿´³ÉÖʵã | |
| B£® | ͼ¢ÚÖйÛÖÚÐÀÉÍÌå²Ù±íÑÝʱ¿É½«Ô˶¯Ô±¿´³ÉÖʵã | |
| C£® | ͼ¢ÛÖÐÑо¿µØÇòÈÆÌ«Ñô¹«×ªÊ±²»Äܽ«µØÇò¿´³ÉÖʵã | |
| D£® | ͼ¢ÜÖÐÑо¿×Óµ¯Éä´©Æ»¹ûµÄʱ¼äʱ¿É½«×Óµ¯¿´³ÉÖʵã |
| A£® | Ö¸ÎÆµÄáÕ´¦Óë°ëµ¼Ìå»ù°åÉ϶ÔÓ¦µÄ½ðÊô¿ÅÁ£¾àÀë½ü£¬µçÈÝС | |
| B£® | Ö¸ÎÆµÄÓø´¦Óë°ëµ¼Ìå»ù°åÉ϶ÔÓ¦µÄ½ðÊô¿ÅÁ£¾àÀëÔ¶£¬µçÈÝС | |
| C£® | ÔÚÊÖÖ¸¼·Ñ¹¾øÔµ±íÃæÊ±£¬µçÈݵ缫¼äµÄ¾àÀë¼õС£¬½ðÊô¿ÅÁ£µç¼«µçÁ¿¼õС | |
| D£® | ÔÚÊÖÖ¸¼·Ñ¹¾øÔµ±íÃæÊ±£¬µçÈݵ缫¼äµÄ¾àÀë¼õС£¬½ðÊô¿ÅÁ£µç¼«µçÁ¿Ôö´ó |
| A£® | 0 | B£® | $\frac{1}{2}$mv${\;}_{0}^{2}$ | ||
| C£® | $\frac{1}{2}$mv${\;}_{0}^{2}$+$\frac{{m}^{3}{g}^{2}}{2{q}^{2}{B}^{2}}$ | D£® | $\frac{1}{2}$mv${\;}_{0}^{2}$-$\frac{{m}^{3}{g}^{2}}{2{q}^{2}{B}^{2}}$ |