ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Îï¿éÏà¶ÔС³µ»¬ÐеÄ×î´ó¾àÀ룻
£¨2£©Îï¿éÂäµØÊ±£¬Îï¿éÓëС³µ×ó¶ËÖ®¼äµÄˮƽ¾àÀ룮
·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ·Ö±ðÇó³öÎï¿é·ÅÉÏС³µÊ±Îï¿éºÍС³µµÄ¼ÓËÙ¶È£¬½áºÏËÙ¶ÈÏàµÈ£¬Çó³öÔ˶¯µÄʱ¼ä£¬¸ù¾ÝÎ»ÒÆ¹«Ê½Çó³öÎï¿éºÍС³µµÄÎ»ÒÆ£¬´Ó¶øµÃ³öÁ½ÕßµÄÏà¶ÔÎ»ÒÆ£®
£¨2£©ËÙ¶ÈÏàµÈÊÜ£¬Îï¿éÏà¶ÔС³µÏò×ó¶Ë»¬¶¯µÄ¹ý³ÌÖУ¬Îï¿éºÍС³µ¶¼×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ·Ö±ðÇó³öÎï¿éºÍС³µµÄ¼ÓËÙ¶È£¬½áºÏÎ»ÒÆ¹«Ê½£¬Çó³öÎï¿é»¬ÀëС³µÊ±Ð¡³µºÍ»¬¿éµÄËÙ¶È£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÎï¿éÀ뿪С³µºóС³µµÄ¼ÓËÙ¶È£¬Îï¿é×öƽÅ×Ô˶¯£¬¸ù¾Ý¸ß¶ÈÇó³öƽÅ×Ô˶¯µÄʱ¼ä£¬Í¨¹ýÔ˶¯Ñ§¹«Ê½Çó³öÎï¿éµÄË®Æ½Î»ÒÆÒÔ¼°Æ½Å×Ô˶¯¹ý³ÌÖÐС³µµÄÎ»ÒÆ£¬´Ó¶øÇó³öÎï¿éÂäµØÊ±£¬Îï¿éÓëС³µ×ó¶ËÖ®¼äµÄˮƽ¾àÀ룮
½â´ð ½â£º£¨1£©¼ÙÉèÎï¿é²»»á´ÓС³µÓÒ¶Ë»¬³ö£¬Éè´ÓÎï¿é»¬ÉÏС³µ£¬¾¹ýʱ¼ät1ºó£¬Îï¿éÓëС³µ´ïµ½¹²Í¬ËÙ¶Èv1£¬Õâ¶Îʱ¼äÄÚÎï¿é×öÔȼõËÙÔ˶¯£¬Ð¡³µ×öÔȼÓËÙÖ±ÏßÔ˶¯£®
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬Îï¿éµÄ¼ÓËÙ¶È${a}_{Îï1}=¦Ìg=3m/{s}^{2}$£¬·½ÏòÏò×ó£®
С³µµÄ¼ÓËÙ¶È${a}_{³µ1}=\frac{F+¦Ìmg}{M}=\frac{15+0.3¡Á10}{3}m/{s}^{2}$=6m/s2£¬·½ÏòÏòÓÒ£®
¸ù¾Ýv1=v0-aÎï1t1£¬=a³µ1t1£¬
´úÈëÊý¾Ý½âµÃ${t}_{1}=\frac{1}{3}s$£¬v1=2.0m/s£®
Ôò${x}_{Îï1}=\frac{{v}_{0}+{v}_{1}}{2}{t}_{1}=\frac{3+2}{2}¡Á\frac{1}{3}m=\frac{5}{6}m$£¬
${x}_{³µ1}=\frac{{v}_{1}}{2}{t}_{1}=\frac{2}{2}¡Á\frac{1}{3}m=\frac{1}{3}m$£¬
Îï¿éÏà¶ÔС³µ»¬ÐеľàÀë¡÷x1=xÎï1-x³µ1=0.5m£¬
ÒòΪ¡÷x1£¼L£¬ËùÒÔÎï¿éûÓдÓС³µÓÒ¶Ë»¬³ö£¬´ËºóÎï¿éµÄËÙ¶ÈСÓÚС³µµÄËÙ¶È£¬½«Ïà¶ÔС³µÏò×ó¶ËÔ˶¯£¬ËùÒÔÎï¿éÏà¶ÔС³µ»¬ÐеÄ×î´ó¾àÀë¡÷x1=0.5m£®
£¨2£©Îï¿éÏà¶ÔС³µÏò×ó¶Ë»¬¶¯µÄ¹ý³ÌÖУ¬Îï¿éºÍС³µ¶¼×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬
Îï¿éµÄ¼ÓËÙ¶È${a}_{Îï2}=¦Ìg=3m/{s}^{2}$£¬·½ÏòÏòÓÒ£®
С³µµÄ¼ÓËÙ¶È${a}_{³µ2}=\frac{F-¦Ìmg}{M}=\frac{15-0.3¡Á10}{3}m/{s}^{2}$=4m/s2£®·½ÏòÏòÓÒ£®
ÉèÔÙ¾¹ýʱ¼ät2£¬Îï¿éÔ˶¯µ½Ð¡³µµÄ×ó¶Ë£¬Õâ¶Îʱ¼äÄÚ£¬Îï¿éºÍС³µµÄÎ»ÒÆ·Ö±ðΪ
${x}_{Îï2}={v}_{1}{t}_{2}+\frac{1}{2}{a}_{Îï2}{{t}_{2}}^{2}$£¬
${x}_{³µ2}={v}_{1}{t}_{2}+\frac{1}{2}{a}_{³µ2}{{t}_{2}}^{2}$£¬
ÓÉÒòΪx³µ2-xÎï2=¡÷x1£¬
´úÈëÊý¾Ý½âµÃt2=1.0s£¬
´ËʱvÎï2=v1+aÎï2t2=5m/s£¬
v³µ2=v1+a³µ2t2=6m/s£¬
´ËʱÎï¿é´ÓС³µ×ó¶Ë»¬ÐУ¬×öƽÅ×Ô˶¯£¬Ð¡³µ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬
С³µµÄ¼ÓËÙ¶È${a}_{³µ3}=\frac{F}{M}=\frac{15}{3}m/{s}^{2}=5m/{s}^{2}$£¬
ÉèÎï¿é×öƽÅ×Ô˶¯µÄʱ¼äΪt3£¬
H=$\frac{1}{2}g{{t}_{3}}^{2}$£¬
½âµÃt3=0.4s£¬
Õâ¶Îʱ¼äÄÚÎï¿éÔÚˮƽ·½ÏòµÄÎ»ÒÆxÎï3=vÎï2t3=5¡Á0.4m=2m£¬
С³µµÄÎ»ÒÆ${x}_{³µ3}={v}_{³µ2}{t}_{3}+\frac{1}{2}{a}_{³µ3}{{t}_{3}}^{2}$£¬
´úÈëÊý¾Ý½âµÃx³µ3=2.8m
ËùÒÔÎï¿éÂäµØÊ±£¬Îï¿éÓëС³µ×ó¶ËÖ®¼äµÄˮƽ¾àÀë¡÷x=x³µ3-xÎï3=2.8-2m=0.8m£®
´ð£º£¨1£©Îï¿éÏà¶ÔС³µ»¬ÐеÄ×î´ó¾àÀëΪ0.5m£»
£¨2£©Îï¿éÂäµØÊ±£¬Îï¿éÓëС³µ×ó¶ËÖ®¼äµÄˮƽ¾àÀëΪ0.8m£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåľ¿éºÍƽ°å³µµÄÔ˶¯¹ý³Ì£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£®
| A£® | ÎïÌåA×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÎïÌåB×öÔÈËÙÖ±ÏßÔ˶¯ | |
| B£® | t2ʱ¿ÌABÁ½¸öÎïÌåµÄËÙ¶È·½ÏòÏà·´ | |
| C£® | 0-t1ʱ¼äÄÚAµÄÎ»ÒÆ´óÓÚBµÄÎ»ÒÆ | |
| D£® | t1ʱ¿ÌǰAµÄËÙ¶ÈСÓÚBµÄËÙ¶È |
| A£® | ÓÐÖÊ×Ó½øÈë´Å³¡ÇøÓòµÄʱ¼äÊÇ0.15s | |
| B£® | ÖÊ×ÓÔڵ糡ÖÐÔ˶¯µÄ×ʱ¼äÊÇ0.10s | |
| C£® | ÖÊ×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ×î´ó°ë¾¶ÊÇ0.5m | |
| D£® | ÖÊ×ÓÔڴų¡ÖÐÔ˶¯µÄ×î´óËÙ¶ÈÊÇv0µÄ$\sqrt{2}$±¶ |
| A£® | »úеÄÜÒ»Ö±¼õС | B£® | »úеÄÜÒ»Ö±Ôö´ó | ||
| C£® | ¶¯ÄÜÒ»Ö±¼õС | D£® | ÖØÁ¦ÊÆÄÜÒ»Ö±Ôö´ó |