ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Ð¡ÇòÔÚAµãµÄËÙ¶È´óС£»
£¨2£©Ð¡ÇòÔÚ×îµÍµãBµãµÄËÙ¶È´óС£»
£¨3£©ÏÖÓÉÓÚijÖÖ¸ÉÈÅʹСÇòÓÉAµã´Ó¹ìµÀ×ó²àµ½´ï×îµÍµãBµÄ¹ý³ÌÖÐËðʧÁ˲¿·ÖÄÜÁ¿£¬Ö®ºóСÇò´ÓBµãÑØÔ²¹ìµÀÔ˶¯£¬ÔÚCµãÀ뿪¹ìµÀ£¬ÒÑÖªCµãÓëÔ²ÐĵÄÁ¬ÏßÓëˮƽ·½Ïò¼Ð½ÇΪ30¡ã£®ÒòΪ¸ÉÈŶøËðʧµÄÄÜÁ¿Îª¶àÉÙ£®
·ÖÎö £¨1£©×¥×¡Ð¡ÇòÇ¡ºÃͨ¹ý×î¸ßµãA£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öСÇòÔÚAµãµÄËÙ¶È´óС£®
£¨2£©¸ù¾Ý¶¯Äܶ¨ÀíÇó³öСÇòÔÚ×îµÍµãBµÄËÙ¶È£®
£¨3£©×¥×¡Ð¡ÇòÔÚCµãÀ뿪£¬½áºÏ¾¶ÏòµÄºÏÁ¦ÌṩÏòÐÄÁ¦Çó³öCµãµÄËÙ¶È£¬¸ù¾ÝÄÜÁ¿ÊغãÇó³ö¸ÉÈŶøËðʧµÄÄÜÁ¿£®
½â´ð ½â£º£¨1£©Ð¡ÇòÇ¡ºÃµ½´ïAµã£¬Ôò¶ÔAµãµÄѹÁ¦ÎªÁ㣬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
mg=$m\frac{{{v}_{A}}^{2}}{R}$£¬
½âµÃ£º${v}_{A}=\sqrt{gR}$£®
£¨2£©¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º$mg•2R=\frac{1}{2}m{{v}_{B}}^{2}-\frac{1}{2}m{{v}_{A}}^{2}$£¬
½âµÃ£º${v}_{B}=\sqrt{5gR}$£®
£¨3£©ÒòΪСÇòÔÚCµãÀ뿪¹ìµÀ£¬¿É֪СÇò¶ÔCµãµÄѹÁ¦ÎªÁ㣬¸ù¾Ý$mgsin30¡ã=m\frac{{{v}_{C}}^{2}}{R}$µÃ£º${v}_{C}=\sqrt{\frac{1}{2}gR}$£¬
¸ù¾ÝÄÜÁ¿ÊغãµÃ£º$\frac{1}{2}m{{v}_{C}}^{2}+¡÷E=\frac{1}{2}m{{v}_{A}}^{2}+mg•\frac{1}{2}R$£¬
½âµÃ£º$¡÷E=\frac{3}{4}mgR$£®
´ð£º£¨1£©Ð¡ÇòÔÚAµãµÄËÙ¶È´óСΪ$\sqrt{gR}$£»
£¨2£©Ð¡ÇòÔÚ×îµÍµãBµãµÄËÙ¶È´óСΪ$\sqrt{5gR}$£»
£¨3£©ÒòΪ¸ÉÈŶøËðʧµÄÄÜÁ¿Îª$\frac{3}{4}mgR$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀСÇò×öÔ²ÖÜÔ˶¯ÏòÐÄÁ¦µÄÀ´Ô´£¬×¥×¡ÁÙ½çÇé¿ö£¬½áºÏ¶¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£¬ÄѶÈÖеȣ®
| A£® | vA¡ä=5 m/s£¬vB¡ä=2.5 m/s | B£® | vA¡ä=7 m/s£¬vB¡ä=1.5 m/s | ||
| C£® | vA¡ä=-4m/s£¬vB¡ä=7 m/s | D£® | vA¡ä=2m/s£¬vB¡ä=4 m/s |
| A£® | ÇúÏßÔ˶¯µÄËÙ¶È¿ÉÒÔÊDz»±äµÄ | |
| B£® | ÇúÏßÔ˶¯µÄÎïÌåËùÊܵĺÏÍâÁ¦·½ÏòÓëËٶȵķ½Ïò²»ÔÚͬһֱÏßÉÏ | |
| C£® | ÇúÏßÔ˶¯µÄÎïÌåËùÊܵĺÏÍâÁ¦Ò»¶¨ÊDZäÁ¦ | |
| D£® | ÎïÌåÊܵ½µÄºÏÍâÁ¦ÎªÁãʱ£¬¿ÉÄÜ×öÇúÏßÔ˶¯ |
| A£® | Ħ²ÁÁ¦¶ÔA¡¢B×ö¹¦ÏàµÈ | |
| B£® | ºÏÍâÁ¦¶ÔA×öµÄ¹¦ÓëºÏÍâÁ¦¶ÔB×öµÄ¹¦ÏàµÈ | |
| C£® | F¶ÔA×öµÄ¹¦ÓëF¶ÔB×öµÄ¹¦ÏàµÈ | |
| D£® | A¶ÔBûÓÐ×ö¹¦ |
| A£® | ml2¦Ø2 | B£® | ml¦Ø | C£® | ml2¦Ø | D£® | ml¦Ø2 |