ÌâÄ¿ÄÚÈÝ
16£®£¨1£©´©¹ýÏßÈ¦Æ½ÃæµÄ×î´ó´ÅͨÁ¿¦µm£»
£¨2£©ÇóÏßȦÖвúÉúµÄ×î´ó¸ÐÓ¦µç¶¯ÊÆ´óС£»
£¨3£©ÈôÏßȦ´ÓͼʾλÖÿªÊ¼£¬×ª¹ý90¡ã²úÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊƵĴóС£®
·ÖÎö £¨1£©ÓÉ´ÅͨÁ¿µÄ¶¨ÒåÇó½â×î´ó´ÅͨÁ¿£»
£¨2£©Ã¿µ±Ïß¿òͨ¹ýÖÐÐÔÃæÊ±£¬µçÁ÷·½Ïò¸Ä±ä£»µ±´ÅͨÁ¿ÎªÁãʱ£¬Ïß¿òÇиîËÙ¶È×î´ó£¬²úÉúµÄµç¶¯ÊÆÒ²×î´ó£®
£¨3£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÇó½âƽ¾ùµç¶¯ÊÆ£®
½â´ð ½â£º£¨1£©´©¹ýÏßÈ¦Æ½ÃæµÄ×î´ó´ÅͨÁ¿ ¦µm=BS=Bl1l2=0.4¡Á0.2¡Á0.25=0.02Wb
£¨2£©ÏßȦÔÚͼʾλÖÃʱµç¶¯ÊÆ´ïµ½×î´óÖµ£¬´Ëʱ¸ÐÓ¦µç¶¯ÊƵÄֵΪ
e=Em=NBS¦Ø=NBl1l2¦Ø=50¡Á0.4¡Á0.2¡Á0.25¡Á10¦Ð=314 V
£¨3£©ÏßȦת¹ýһȦÓÃʱ$T=\frac{2¦Ð}{¦Ø}=\frac{2¦Ð}{10¦Ð}=0.2s$
ÈôÏßȦ´ÓͼʾλÖÿªÊ¼£¬×ª¹ý900ÓÃʱ $¡÷t=\frac{1}{4}T=0.05s$
ÄÇôÏßȦÖвúÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊÆÎª$E=n\frac{¡÷¦µ}{¡÷t}=\frac{50¡Á0.02}{0.05}=20$V
´ð£º£¨1£©´©¹ýÏßÈ¦Æ½ÃæµÄ×î´ó´ÅͨÁ¿¦µmΪ0.02Wb£»
£¨2£©ÏßȦÖвúÉúµÄ×î´ó¸ÐÓ¦µç¶¯ÊÆ´óСΪ314V£»
£¨3£©ÈôÏßȦ´ÓͼʾλÖÿªÊ¼£¬×ª¹ý90¡ã²úÉúµÄƽ¾ù¸ÐÓ¦µç¶¯ÊƵĴóСΪ20V£®
µãÆÀ Ïß¿òÔÚÔÈÇ¿´Å³¡ÖÐÔÈËÙת¶¯£¬²úÉúÕýÏÒʽ½»±äµçÁ÷£®¶ø¶ÔÓÚµç±í¶ÁÊý¡¢Çó²úÉúµÄÈÈÁ¿¾ùÓɽ»±äµçµÄÓÐЧֵÀ´È·¶¨£¬¶øÉæ¼°µ½ÄÍѹֵʱ£¬ÔòÓÉ×î´óÖµÀ´È·¶¨£®¶øÍ¨¹ýijһµçÁ¿Ê±£¬ÔòÓÃÆ½¾ùÖµÀ´Çó
| A£® | 1.502m | B£® | 1.6214m | C£® | 12.4cm | D£® | 4.30mm |
| A£® | sin3¦È | B£® | $\frac{1}{si{n}^{3}¦È}$ | C£® | $\sqrt{si{n}^{3}¦È}$ | D£® | $\sqrt{\frac{1}{si{n}^{3}¦È}}$ |
| A£® | ÔÚbºÍdʱ¿Ì£¬µç·ÖеçÁ÷×îС | B£® | ÔÚa¡úbʱ¼äÄÚ£¬µç³¡ÄÜת±äΪ´Å³¡ÄÜ | ||
| C£® | aºÍcʱ¿Ì£¬µç³¡ÄÜÄÜΪÁã | D£® | ÔÚO¡úaºÍc¡údʱ¼äÄÚ£¬µçÈÝÆ÷±»³äµç |
| A£® | ÎÀÐǵĹìµÀ¿ÉÄÜΪa | B£® | ÎÀÐǵĹìµÀ¿ÉÄÜΪb | ||
| C£® | ÎÀÐǵĹìµÀ¿ÉÄÜΪc | D£® | ͬ²½ÎÀÐǵĹìµÀÖ»¿ÉÄÜΪb |