ÌâÄ¿ÄÚÈÝ
1£®ÓÃÈçͼ1ËùʾµÄʵÑé×°ÖÃ̽¾¿ÎïÌåµÄ¶¯Äܱ仯ºÍÖØÁ¦×ö¹¦µÄ¹ØÏµÊ±£®ÊµÑéËùÓõĵçԴΪѧÉúµçÔ´£¬Êä³öµçѹÓн»Á÷µçºÍÖ±Á÷µçÁ½ÖÖ£®ÖØ´¸´Ó¸ß´¦Óɾ²Ö¹¿ªÊ¼ÏÂÂ䣬´òµã¼ÆÊ±Æ÷ÔÚÖØ´¸ÍÏ×ŵÄÖ½´øÉÏ´ò³öһϵÁеĵ㣬¶ÔͼÖÐÖ½´øÉϵĵ㼣½øÐвâÁ¿£¬¼´¿ÉÖªµÀÎïÌåµÄ¶¯ÄÜ ±ä»¯ºÍÖØÁ¦×ö¹¦µÄ¹ØÏµ£®£¨1£©ÏÂÁм¸¸ö²Ù×÷²½ÖèÖУº
A£®°´ÕÕͼʾ£¬°²×°ºÃʵÑé×°Öã»
B£®½«´òµã¼ÆÊ±Æ÷½Óµ½4¡«6VµÄ¡°½»Á÷Êä³ö¡±ÉÏ£»
C£®ÓÃÌìÆ½²â³öÖØ´¸µÄÖÊÁ¿£»
D£®ÏÈÊÍ·ÅÖØ´¸£¬ºó½ÓͨµçÔ´£¬Ö½´øËæ×ÅÖØ´¸Ô˶¯£¬´òµã¼ÆÊ±Æ÷ÔÚÖ½´øÉÏ´òÏÂһϵÁеĵ㣻
E£®²âÁ¿Ö½´øÉÏijЩµã¼äµÄ¾àÀ룻
F£®¸ù¾Ý²âÁ¿µÄ½á¹û¼ÆËãÖØ´¸ÏÂÂä¹ý³ÌÖж¯Äܵı仯ÊÇ·ñµÈÓÚÖØÁ¦×öµÄ¹¦£®
ÉÏÊö²½ÖèÖÐûÓбØÒªµÄÊÇC£¬²Ù×÷´íÎóµÄÊÇD£®£¨ÌîÏàÓ¦µÄ×Öĸ£©
£¨2£©Ê¹ÓÃÖÊÁ¿ÎªmµÄÖØ´¸ºÍ´òµã¼ÆÊ±Æ÷̽¾¿ÎïÌåµÄ¶¯Äܱ仯ºÍÖØÁ¦×ö¹¦µÄ¹ØÏµÊµÑéÖУ¬ÔÚÑ¡¶¨µÄÖ½´øÉÏÒÀ´ÎÈ¡¼ÆÊýµãÈçͼ2Ëùʾ£¬Ö½´øÉÏËù´òµÄµã¼Ç¼ÁËÎïÌåÔÚ²»Í¬Ê±¿ÌµÄλÖã¬ÄÇôֽ´øµÄ×ó£¨Ìî¡°×ó¡±»ò¡°ÓÒ¡±£©ÓëÖØÎïÏàÁ¬£®ÉèÁ½¼ÆÊýµãÖ®¼äµÄʱ¼ä¼ä¸ô¾ùΪT£¬ÇÒOΪ´òϵĵÚÒ»¸öµã£®µ±´òµã¼ÆÊ±Æ÷´òµã¡°3¡±Ê±£¬ÎïÌåµÄ¶¯Äܱí´ïʽΪEk3=m$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$£¬ÈôÒÔÖØÎïµÄÔ˶¯ÆðµãOΪ²Î¿¼µã£¬µ½´òµÚ¡°3¡±µãµÄ¹ý³ÌÖУ¬ÔÚÎó²îÐí¿ÉµÄ·¶Î§ÄÚ£¬ÓÃÀ´Ñé֤ʵÑé½áÂ۵ıí´ïʽÊÇ$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$=gs3£®
·ÖÎö £¨1£©Í¨¹ýʵÑéµÄÔÀíÈ·¶¨ÐèÒª²âÁ¿µÄÎïÀíÁ¿£¬´Ó¶øÈ·¶¨²»ÐèÒªµÄ²âÁ¿²½Ö裮ʵÑéʱ£¬´òµã¼ÆÊ±Æ÷Ó¦½Ó½»Á÷µçÔ´£¬ÏȽÓͨµçÔ´£¬ÔÙÊÍ·ÅÖ½´ø£®
£¨2£©Ö½´øÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËÙ¶È£®´Ó¶øÇó³ö¶¯ÄÜ£®¸ù¾Ý¹¦ÄܹØÏµµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
½â´ð ½â£º£¨1£©ÒòΪÎÒÃÇÊDZȽÏmgh¡¢$\frac{1}{2}$mv2µÄ´óС¹ØÏµ£¬¹Êm¿ÉԼȥ±È½Ï£¬²»ÐèÒªÓÃÌìÆ½£®¹ÊCûÓбØÒª£®
¿ªÊ¼¼Ç¼ʱ£¬Ó¦Ïȸø´òµã¼ÆÊ±Æ÷ͨµç´òµã£¬È»ºóÔÙÊÍ·ÅÖØ´¸£¬ÈÃËü´ø×ÅÖ½´øÒ»Í¬ÂäÏ£¬Èç¹ûÏÈ·Å¿ªÖ½´øÈÃÖØÎïÏÂÂ䣬ÔÙ½Óͨ´òµã¼ÆÊ±Ê±Æ÷µÄµçÔ´£¬ÓÉÓÚÖØÎïÔ˶¯½Ï¿ì£¬²»ÀûÓÚÊý¾ÝµÄ²É¼¯ºÍ´¦Àí£¬»á¶ÔʵÑé²úÉú½Ï´óµÄÎó²î£¬¹Ê²Ù×÷D´íÎó£®
£¨2£©ÊµÑéÖÐÖØ´¸ÊÇ´Ó¾²Ö¹Êͷŵģ¬ËÙ¶ÈÖð½¥Ôö´ó£¬ÓëÖØ´¸ÏàÁ¬µÄÖ½´øËٶȽÏС£¬ºóÃæÖð½¥Ôö´ó£®´ÓͼÖпÉÒÔ¿´³öÓ¦¸ÃÊÇ×ó¶ËÓëÖØÎïÏàÁ¬£®
ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ
v3=$\frac{{x}_{24}}{2T}$=$\frac{{s}_{4}-{s}_{2}}{2T}$
Ek3=$\frac{1}{2}$mv32=m$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$
ÒÔÖØÎïµÄÔ˶¯ÆðµãOΪ²Î¿¼µã
3µãµÄÖØÁ¦ÊÆÄܵÈÓÚEp=-mgh=-mgs3 £¬
µ±´òµÚµã¡°3¡±Ê±ÎïÌåµÄ»úеÄܱí´ïʽΪ£ºm$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$=mgs3
¼´$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$=gs3£»
¹Ê´ð°¸Îª£º£¨1£©C£¬D£»£¨2£©×ó£¬Ek3=m$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$£¬$\frac{£¨{s}_{4}-{s}_{2}£©^{2}}{8{T}^{2}}$=gs3
µãÆÀ ÒªÔËÓÃÔ˶¯Ñ§µÄ¹«Ê½È¥Çó½âËÙ¶È´óС£®ÔÙÇó³ö¶¯ÄÜ£®Ä³¸öλÖõÄÖØÁ¦ÊÆÄܵÄÇó½âÒª¹æ¶¨ÁãÊÆÄÜÃæ£®Ö»ÓÐÃ÷È·ÁËʵÑéÔÀíÒÔ¼°ÊµÑéµÄÊý¾Ý²âÁ¿£¬²ÅÄÜÃ÷È·¸÷ÏîʵÑé²Ù×÷µÄ¾ßÌ庬Ò壬ÕâµãÒªÔÚÆ½Ê±ÑµÁ·ÖмÓÇ¿Á·Ï°£®
| A£® | ÌìÎÄѧ¼ÒµÚ¹ÈÌá³öÌ«ÑôϵÐÐÐÇÔ˶¯Èý´ó¶¨ÂÉ | |
| B£® | ÎïÀíѧ¼ÒÅ£¶ÙÌá³öÁËÍòÓÐÒýÁ¦¶¨Âɲ¢¸ø³öÁËÍòÓÐÒýÁ¦³£Á¿µÄÖµ | |
| C£® | ¿¨ÎĵÏÐíÓÃʵÑéµÄ·½·¨²â³öÍòÓÐÒýÁ¦³£Á¿G | |
| D£® | Ñǵ±Ë¹ºÍÀÕάҮ¸÷×Ô¶ÀÁ¢ÒÀ¾ÝÍòÓÐÒýÁ¦¶¨ÂɼÆËã³öÁËÌìÍõÐǵĹìµÀ£¬¹ÊÈËÃÇ³ÆÆäΪ¡°±Ê¼âÏ·¢ÏÖµÄÐÐÐÇ¡± |
| A£® | R=$\frac{£¨{{t}_{2}}^{2}+{{t}_{1}}^{2}£©h{T}^{2}}{4{¦Ð}^{2}{{t}_{1}}^{2}{{t}_{2}}^{2}}$ | |
| B£® | R=$\frac{£¨{{t}_{2}}^{2}+{{t}_{1}}^{2}£©h{T}^{2}}{2{¦Ð}^{2}{{t}_{1}}^{2}{{t}_{2}}^{2}}$ | |
| C£® | R=$\frac{£¨{{t}_{2}}^{2}-{{t}_{1}}^{2}£©h{T}^{2}}{2{¦Ð}^{2}{{t}_{1}}^{2}{{t}_{2}}^{2}}$ | |
| D£® | R=$\frac{£¨{{t}_{2}}^{2}-{{t}_{1}}^{2}£©h{T}^{2}}{4{¦Ð}^{2}{{t}_{1}}^{2}{{t}_{2}}^{2}}$ |
| A£® | ¬ɪ¸£Í¨¹ý¦ÁÁ£×ÓÉ¢ÉäʵÑéÌá³öÁËÔ×ÓºËʽ½á¹¹µÄÄ£ÐÍ | |
| B£® | Âó¿Ë˹ΤÊ×ÏÈ´ÓʵÑéÉÏ֤ʵÁ˵ç´Å²¨µÄ´æÔÚ | |
| C£® | °®Òò˹̹Ìá³ö¡°¹â×Ó¡±ÀíÂÛ£¬³É¹¦µØ¶Ô¹âµçЧӦ½øÐÐÁ˽âÊÍ | |
| D£® | ÔÚÏà¶ÔÂÛÖУ¬Ô˶¯ÖеÄʱÖÓ»á±È¾²Ö¹Ê±×ߵÿì |