ÌâÄ¿ÄÚÈÝ
16£®ÏÖ´ú¿ÆÑ§ÒÇÆ÷³£ÀûÓõ糡¡¢´Å³¡¿ØÖÆ´øµçÁ£×ÓµÄÔ˶¯£®ÈçͼËùʾ£¬Õæ¿ÕÖдæÔÚ×Ŷà²ã½ôÃÜÏàÁÚµÄÔÈÇ¿µç³¡ºÍÔÈÇ¿´Å³¡£¬¿í¶È¾ùΪd£®µç³¡Ç¿¶ÈΪE£¬·½ÏòˮƽÏò×ó£»´¹Ö±Ö½ÃæÏòÀï´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB1£¬´¹Ö±Ö½ÃæÏòÍâ´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB2£®µç³¡¡¢´Å³¡µÄ±ß½ç»¥ÏàÆ½ÐÐÇÒÓëµç³¡·½Ïò´¹Ö±£®Ò»¸öÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄ´øÕýµçÁ£×ÓÔÚµÚ1²ã´Å³¡×ó²à±ß½çÒÔ³õËÙ¶Èv0ÉäÈ룬·½ÏòÓë±ß½ç¼Ð½ÇΪ¦È£¬ÉèÁ£×ÓʼÖÕÔڵ糡¡¢´Å³¡ÖÐÔ˶¯£¬³ýB1¡¢B2¡¢EÒÔÍâÆäËûÎïÀíÁ¿ÒÑÖª£¬²»¼ÆÁ£×ÓÖØÁ¦¼°Ô˶¯Ê±µÄµç´Å·øÉ䣮£¨cos53¡ã=0.6£¬sin53¡ã=0.8£©£¨1£©Èô¦È=53¡ã£¬ÒªÇóÁ£×Ó²»½øÈëµç³¡£¬ÇóB1ÖÁÉÙ¶à´ó£¿
£¨2£©Èô¦È=53¡ãÇÒB1=$\frac{m{v}_{0}}{5qd}$£¬ÒªÇóÁ£×Ó²»´©³öµç³¡£¬ÇóEÖÁÉÙ¶à´ó£¿
£¨3£©ÈôB1¡¢E¾ùÒÑÖª£¬ÇóÁ£×Ó´ÓµÚn²ã´Å³¡ÓÒ²à±ß½ç´©³öʱËٶȵĴóС£®
£¨4£©ÈôB1¡¢E¾ùÒÑÖª£¬ÇÒÁ£×Ó´ÓµÚn²ã´Å³¡ÓÒ²à±ß½ç´©³öʱËÙ¶È·½ÏòÇ¡ÓëÔ·½ÏòƽÐУ¬ÇóB2µÄÖµ£®
·ÖÎö £¨1£©ÕÒµ½Á£×ÓÇ¡ºÃ²»½øÈëµç³¡µÄÁÙ½çÌõ¼þ£¬¼´¹ì¼£Ç¡ºÃÓëµÚÒ»²ã×ó±ß´Å³¡µÄÓұ߽çÏàÇУ¬ÀûÓÃÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÔÙÓëÁٽ缸ºÎ¹ØÏµÁªÁ¢£¬¼´¿ÉÇó³öB1µÄÁÙ½çÖµ£»
£¨2£©ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬½áºÏÒÑÖªB1=$\frac{m{v}_{0}}{5qd}$£¬ÔÙÀûÓü¸ºÎ¹ØÏµ£¬¿ÉÇó³öÁ£×Ó½øÈëµç³¡Ê±µÄËٶȵķ½Ïò£¬ÔÙÔËÓÃÔ˶¯µÄºÏ³ÉºÍ·Ö½â£¬Ö»¿¼ÂÇÑØµç³¡Ïß·½ÏòµÄÔ˶¯£¬Á£×Ó²»´©³öµç³¡ÐèÂú×㣺Á£×ÓÇ¡ºÃÔ˶¯µ½µÚÒ»²ãµç³¡µÄÓұ߽çʱ£¬Ñص糡Ïß·½ÏòµÄËÙ¶ÈÇ¡ºÃ¼õΪ0£¬ÀûÓÃÅ£¶ÙµÚ¶þ¶¨ÂɽáºÏÔ˶¯Ñ§¹æÂÉ£¬¼´¿ÉÇó³öµç³¡Ç¿¶ÈEµÄÁÙ½çÖµ£»
£¨3£©´Ó×ö¹¦µÄ½Ç¶È¿¼ÂÇ£¬ÂåÂ××ÈÁ¦²»×ö¹¦£¬µç³¡Á¦×ö¸º¹¦£¬ÔËÓö¯Äܶ¨Àí¼´¿ÉÇó³öÁ£×Ó´ÓµÚn²ã´Å³¡ÓÒ²à±ß½ç´©³öʱËٶȵĴóС£»
£¨4£©È«¹ý³ÌÔÚ´¹Ö±Óڵ糡·½ÏòÉÏÖ»ÓÐÂåÂ××ÈÁ¦ÓгåÁ¿£¬ÉèÏòÉÏΪÕý·½Ïò£¬¸ù¾Ý¶¯Á¿¶¨Àí½áºÏ£¨3£©ÎÊÖÐvnµÄÖµ£¬ÁªÁ¢¼´¿ÉÇó³öB2µÄÖµ£®
½â´ð ½â£º£¨1£©µ±¦È=53¡ãʱ£¬ÉèÁ£×ÓÔÚB1³¡ÖÐÔ²ÖÜÔ˶¯°ë¾¶ÎªR1£¬
¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¿ÉµÃ£ºqv0B1=m$\frac{{v}_{0}^{2}}{{R}_{1}}$
Ç¡²»½øÈëµç³¡Ê±ÓÐR1-R1cos¦È=d
½âµÃ£ºB1¡Ý$\frac{2m{v}_{0}}{5qd}$
£¨2£©µ±¦È=53¡ãÇÒB1=$\frac{m{v}_{0}}{5qd}$£¬ÉèÁ£×ÓÔÚB1³¡ÖÐÔ²ÖÜÔ˶¯°ë¾¶ÎªR1¡ä£¬
¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦¿ÉµÃ£ºqv0B1=m$\frac{{v}_{0}^{2}}{{R}_{1}¡ä}$
ÉèÁ£×Ó½øÈëµç³¡Ê±Óë½çÃæ¼Ð½ÇΪ¦Â£¬
ÔÚB1³¡ÖУ¬Óɼ¸ºÎ¹ØÏµ£ºR1¡äcos¦Â-R1¡äcos¦È=d
½âµÃ£º¦Â=37¡ã
Ôڵ糡ÖÐÑØ³¡Ç¿·½ÏòÉÏÔȼõËÙÔ˶¯£¬ÓУº£¨v0sin¦Â£©2-0=2$\frac{Eq}{m}$d
ËùÒÔ£ºE¡Ý$\frac{9m{v}_{0}^{2}}{50qd}$
£¨3£©¶ÔÁ£×Ó£¬Éè´ÓµÚn²ã´Å³¡ÓÒ²à±ß½ç´©³öʱËٶȵĴóСΪvn£¬
¸ù¾Ý¶¯Äܶ¨Àí¿ÉµÃ£º-nEqd=$\frac{1}{2}m{v}_{n}^{2}-\frac{1}{2}m{v}_{0}^{2}$
½âµÃ£ºvn=$\sqrt{{v}_{0}^{2}-2nEqd}$
£¨4£©¶ÔÁ£×Ó£¬È«¹ý³ÌÖУ¬ÔÚ´¹Ö±Óڵ糡·½ÏòÉÏÖ»ÓÐÂåÂ××ÈÁ¦ÓгåÁ¿£¬ÉèÏòÉÏΪÕý·½Ïò£¬
Óɶ¯Á¿¶¨Àí¿ÉµÃ£ºn£¨B1qd-B2qd£©=mvncos¦È-mv0cos¦È
½âµÃ£ºB2=B1+$\frac{m£¨{v}_{0}-\sqrt{{v}_{0}^{2}-2nEqd}£©cos¦È}{nqd}$
´ð£º£¨1£©Èô¦È=53¡ã£¬ÒªÇóÁ£×Ó²»½øÈëµç³¡£¬B1ÖÁÉÙΪ$\frac{2m{v}_{0}}{5qd}$£»
£¨2£©Èô¦È=53¡ãÇÒB1=$\frac{m{v}_{0}}{5qd}$£¬ÒªÇóÁ£×Ó²»´©³öµç³¡£¬EÖÁÉÙΪ$\frac{9m{v}_{0}^{2}}{50qd}$£»
£¨3£©ÈôB1¡¢E¾ùÒÑÖª£¬Á£×Ó´ÓµÚn²ã´Å³¡ÓÒ²à±ß½ç´©³öʱËٶȵĴóСΪ$\sqrt{{v}_{0}^{2}-2nEqd}$£»
£¨4£©ÈôB1¡¢E¾ùÒÑÖª£¬ÇÒÁ£×Ó´ÓµÚn²ã´Å³¡ÓÒ²à±ß½ç´©³öʱËÙ¶È·½ÏòÇ¡ÓëÔ·½ÏòƽÐУ¬B2µÄֵΪB1+$\frac{m£¨{v}_{0}-\sqrt{{v}_{0}^{2}-2nEqd}£©cos¦È}{nqd}$£®
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯£¬ÊôÓڸ߿¼µÄѹÖáÌ⣬ҪÇóѧÉúÄÜÕýÈ··ÖÎöÎïÀí¹ý³Ì£¬²¢ÄÜÁé»îÓ¦ÓÃÎïÀíѧÖÐÏàÓ¦µÄ¹æÂÉ£»Í¬Ê±»¹Òª×¢ÒâÕÆÎÕÕûÌå˼ÏëÒÔ¼°Êýѧ֪ʶÔÚÎïÀíѧÖеÄÓ¦Ó㻸ÃÀàÎÊÌâµÄÄѶȽϴ󣬶ÔѧÉú×ÛºÏÄÜÁ¦ÒªÇó½Ï¸ß£®
| A£® | -x·½Ïò | B£® | -y·½Ïò | C£® | +z·½Ïò | D£® | -z·½Ïò |
| A£® | ËüµÄ¼ÓËÙ¶ÈʼÖÕÖ¸ÏòÔ²ÐÄ | |
| B£® | ËüËùÊܺÏÍâÁ¦´óС±ä»¯£¬·½ÏòÖ¸ÏòÔ²ÐÄ | |
| C£® | ËüËùÊܺÏÍâÁ¦´óС²»±ä | |
| D£® | ËüµÄÏòÐÄÁ¦²»¶ÏÔö´ó |
| A£® | ´Ó¾²Ö¹µ½B¸ÕÀ뿪CµÄ¹ý³ÌÖУ¬A·¢ÉúµÄÎ»ÒÆÎª$\frac{mgsin¦È}{k}$ | |
| B£® | ´Ó¾²Ö¹µ½B¸ÕÀ뿪CµÄ¹ý³ÌÖУ¬ÖØÁ¦¶ÔA×öµÄ¹¦Îª-$\frac{2{m}^{2}{g}^{2}sin¦È}{k}$ | |
| C£® | B¸ÕÀ뿪Cʱ£¬ºãÁ¦F¶ÔA×ö¹¦µÄ˲ʱ¹¦ÂÊΪm£¨a+gsin¦È£©v | |
| D£® | ´Ó¾²Ö¹µ½B¸ÕÀ뿪CµÄ¹ý³ÌÖУ¬µ¯»É¶ÔA×öµÄ×ܹ¦Îª0 |
| A£® | Á½ÇòµÄ¶¯ÄÜÏàµÈ | B£® | Á½ÇòµÄ¼ÓËÙ¶È´óСÏàµÈ | ||
| C£® | Á½ÇòµÄ½ÇËÙ¶È´óСÏàµÈ | D£® | Á½Çò¶ÔÍëµ×µÄѹÁ¦´óСÏàµÈ |
| A£® | СÇòµÄ»úеÄÜÊØºã | |
| B£® | СÇòÔÚBµãʱ¶¯Äܲ»ÊÇ×î´óµÄ | |
| C£® | СÇòºÍµ¯»É×é³ÉµÄϵͳ»úеÄܲ»Êغã | |
| D£® | B¡úCµÄ¹ý³ÌСÇòµÄ¶¯ÄÜÒ»Ö±¼õС |
| A£® | ´ËʱÎï¿éµÄ¶¯ÄÜΪ£¨F-Ff£©£¨x+l£© | |
| B£® | ÕâÒ»¹ý³ÌÖУ¬Îï¿é¶ÔС³µËù×öµÄ¹¦ÎªFf£¨x+l£© | |
| C£® | ÕâÒ»¹ý³ÌÖУ¬Îï¿éºÍС³µ²úÉúµÄÄÚÄÜΪFfl | |
| D£® | ÕâÒ»¹ý³ÌÖУ¬Îï¿éºÍС³µÔö¼ÓµÄ»úеÄÜΪFx |
| A£® | ³·È¥Fºó£¬ÎïÌåÏÈ×öÔȼÓËÙÔ˶¯£¬ÔÙ×öÔȼõËÙÔ˶¯ | |
| B£® | µ±µ¯»É»Ö¸´Ô³¤Ê±£¬ÎïÌåµÄ¶¯ÄÜ×î´ó | |
| C£® | ³·È¥Fºó£¬ÎïÌå¸ÕÔ˶¯Ê±µÄ¼ÓËÙ¶È´óСΪ$\frac{k{x}_{0}}{m}$-¦Ìg | |
| D£® | ÎïÌ忪ʼÏò×óÔ˶¯µ½ËÙ¶È×î´óµÄ¹ý³ÌÖп˷þĦ²ÁÁ¦×öµÄ¹¦Îª¦Ìmg£¨x0-$\frac{¦Ìmg}{k}$£© |
| A£® | ¹¦ | B£® | ÏòÐÄÁ¦ | C£® | ËÙ¶È | D£® | ¼ÓËÙ¶È |