ÌâÄ¿ÄÚÈÝ
18£®ÈçͼËùʾ£¬Á½¸ùÏà¾àL1µÄƽÐдֲڽðÊôµ¼¹ì¹Ì¶¨ÔÚË®Æ½ÃæÉÏ£¬µ¼¹ìÉÏ·Ö²¼×Ån ¸ö¿í¶ÈΪd¡¢¼ä¾àΪ2dµÄÔÈÇ¿´Å³¡ÇøÓò£¬´Å³¡·½Ïò´¹Ö±Ë®Æ½ÃæÏòÉÏ£®ÔÚµ¼¹ìµÄ×ó¶ËÁ¬½ÓÒ»¸ö×èֵΪRµÄµç×裬µ¼¹ìµÄ×ó¶Ë¾àÀëµÚÒ»¸ö´Å³¡ÇøÓòL2µÄλÖ÷ÅÓÐÒ»¸ùÖÊÁ¿Îªm£¬³¤ÎªL1£¬×èֵΪrµÄ½ðÊô°ô£¬µ¼¹ìµç×è¼°½ðÊô°ôÓëµ¼¹ì¼äµÄ½Ó´¥µç×è¾ù²»¼Æ£®Ä³Ê±¿ÌÆð£¬½ðÊô°ôÔÚһˮƽÏòÓÒµÄÒÑÖªºãÁ¦F×÷ÓÃÏÂÓɾ²Ö¹¿ªÊ¼ÏòÓÒÔ˶¯£¬ÒÑÖª½ðÊô°ôÓëµ¼¹ì¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®£¨1£©Èô½ðÊô°ôÄܹ»ÔÈËÙͨ¹ýÿ¸öÔÈÇ¿´Å³¡ÇøÓò£¬Çó½ðÊô°ôÀ뿪µÚ2¸öÔÈÇ¿´Å³¡ÇøÓòʱµÄËÙ¶Èv2µÄ´óС£»
£¨2£©ÔÚÂú×ãµÚ£¨1£©Ð¡ÌâÌõ¼þʱ£¬ÇóµÚn¸öÔÈÇ¿´Å³¡ÇøÓòµÄ´Å¸ÐӦǿ¶ÈBnµÄ´óС£»
£¨3£©ÏÖ±£³ÖºãÁ¦F²»±ä£¬Ê¹Ã¿¸ö´Å³¡ÇøÓòµÄ´Å¸ÐӦǿ¶È¾ùÏàͬ£¬·¢ÏÖ½ðÊô°ôͨ¹ýÿ¸ö´Å³¡ÇøÓòʱµç·ÖеĵçÁ÷±ä»¯¹æÂÉÍêÈ«Ïàͬ£¬Çó½ðÊô°ô´Ó¿ªÊ¼Ô˶¯µ½Í¨¹ýµÚn¸ö´Å³¡ÇøÓòµÄÕû¸ö¹ý³ÌÖÐ×ó¶Ëµç×èRÉϲúÉúµÄ½¹¶úÈÈQ£®
·ÖÎö £¨1£©½ðÊô°ôÔȼÓËÙÔ˶¯Ê±£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó½â½ðÊô°ôÀ뿪µÚ2¸öÔÈÇ¿´Å³¡ÇøÓòʱµÄËÙ¶Èv2µÄ´óС£®
£¨2£©Çó³ö½ðÊô°ôÔȼÓËÙÔ˶¯µÄÎ»ÒÆ£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó³ö½øÈëµÚn¸ö´Å³¡µÄËÙ¶È£¬¸ù¾ÝÔÚµÚn¸ö´Å³¡ÖеÄÊÜÁ¦Æ½ºâÇóµÚn¸ö´Å³¡µÄ´Å¸ÐӦǿ¶ÈBn£®
£¨3£©¸ù¾ÝÔ˶¯Ñ§¹«Ê½½áºÏ¶¯Äܶ¨ÀíÇó³öÕû¸öµç·²úÉúµÄ½¹¶úÈÈ£¬¸ù¾ÝÄÜÁ¿¹ØÏµÇóµç×èÉϵĽ¹¶úÈÈ£®
½â´ð ½â£º£¨1£©½ðÊô°ôÔȼÓËÙÔ˶¯Ê±£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓÐ
F-¦Ìmg=ma
ÓÉÔ˶¯Ñ§¹«Ê½ÓÐ v22=2a£¨L2+2d£©
½âµÃ£ºv2=$\sqrt{\frac{2£¨F-¦Ìmg£©£¨{L}_{2}+2d£©}{m}}$
£¨2£©½ðÊô°ôÔȼÓËÙÔ˶¯µÄ×ÜÎ»ÒÆÎª x=L2+2nd-2d
½ðÊô°ô½øÈëµÚn¸öÔÈÇ¿´Å³¡µÄËÙ¶ÈÂú×ã vn2=2ax
½ðÊô°ôÔÚµÚn¸ö´Å³¡ÖÐÔÈËÙÔ˶¯ÓÐ
F-¦Ìmg-F°²=0
ÓÖ F°²=$\frac{{B}_{n}^{2}{L}_{1}^{2}{v}_{n}}{R+r}$
½âµÃ£ºBn=$\frac{1}{{L}_{1}}$$\root{4}{\frac{m£¨F-¦Ìmg£©£¨R+r£©^{2}}{2{L}_{2}+4nd-4d}}$
£¨3£©½ðÊô°ô½øÈëÿ¸ö´Å³¡Ê±µÄËÙ¶ÈvºÍÀ뿪ÿ¸ö´Å³¡Ê±µÄËÙ¶Èv¡ä¾ùÏàͬ£¬ÓÉÌâÒâ¿ÉµÃ
v2=2aL2
v2-v'2=2a•2d
½ðÊô°ô´Ó¿ªÊ¼Ô˶¯µ½Í¨¹ýµÚn¸ö´Å³¡ÇøÓòµÄ¹ý³ÌÖУ¬ÓÐ
x×Ü=L2+3nd-2d
¸ù¾Ý¶¯Äܶ¨ÀíµÃ£¨F-¦Ìmg£©x×Ü-Q×Ü=$\frac{1}{2}$mv¡ä2£»
µç×èRÉϲúÉúµÄ½¹¶úÈÈ Q=$\frac{R}{R+r}$Q×Ü£»
½âµÃ£ºQ=$\frac{3R}{R+r}$nd£¨F-¦Ìmg£©
´ð£º
£¨1£©½ðÊô°ôÀ뿪µÚ2¸öÔÈÇ¿´Å³¡ÇøÓòʱµÄËÙ¶Èv2µÄ´óСÊÇ$\sqrt{\frac{2£¨F-¦Ìmg£©£¨{L}_{2}+2d£©}{m}}$£»
£¨2£©µÚn¸öÔÈÇ¿´Å³¡ÇøÓòµÄ´Å¸ÐӦǿ¶ÈBnµÄ´óСÊÇ$\frac{1}{{L}_{1}}$$\root{4}{\frac{m£¨F-¦Ìmg£©£¨R+r£©^{2}}{2{L}_{2}+4nd-4d}}$£»
£¨3£©×ó¶Ëµç×èRÉϲúÉúµÄ½¹¶úÈÈQÊÇ$\frac{3R}{R+r}$nd£¨F-¦Ìmg£©£®
µãÆÀ ±¾Ìâ·ÖÎöÊÜÁ¦ÊÇ»ù´¡£¬¹Ø¼ü´ÓÄÜÁ¿×ª»¯ºÍÊØºã½Ç¶ÈÀ´Çó½â£¬½âÌâʱҪעÒâץסʹ°ô½øÈë¸÷´Å³¡µÄËٶȶ¼Ïàͬ£¬ÒÔ¼°Í¨¹ýÿ¶Î´Å³¡Ê±µç·Öз¢ÈÈÁ¿¾ùÏàͬµÄÌõ¼þ£®
| A£® | ±ØÐëÒÔ40 km/hËÙ¶ÈÐÐÊ» | |
| B£® | ƽ¾ùËÙ¶È´óС²»µÃ³¬¹ý40 km/h | |
| C£® | ˲ʱËÙ¶È´óС²»µÃ³¬¹ý40 km/h | |
| D£® | Æû³µÉϵÄËٶȼÆÖ¸Ê¾Öµ£¬ÓÐʱ»¹ÊÇ¿ÉÒÔ³¬¹ý40 km/h |
| A£® | ϸÏß¶Ô½ðÊô¿ò×öµÄ¹¦µÈÓÚ½ðÊô¿òÔö¼ÓµÄ»úеÄÜ | |
| B£® | ϸÏß¶Ô½ðÊô¿òµÄÀÁ¦¿ÉÄܵÈÓÚMg | |
| C£® | Ïß¿òÉϵÄÈȹ¦ÂÊ¿ÉÄÜ´óÓÚ$\frac{£¨M-o.5m£©^{2}{g}^{2}R}{{B}^{2}{L}^{2}}$ | |
| D£® | ÈçÏß¿ò¼ÓËÙ½øÈë´Å³¡£¬ÏµÍ³µÄ»úеÄÜËðʧ¿ÉÄÜСÓÚMgL-$\frac{1}{2}$mgL |
| A£® | ÏßȦÖеĸÐÓ¦µçÁ÷Ö®±ÈI1£ºI2=2£º1 | |
| B£® | ×÷ÓÃÔÚÏßȦÉϵÄÍâÁ¦´óС֮±ÈF1£ºF2=1£º2 | |
| C£® | ÏßȦÖвúÉúµÄ½¹¶úÈÈÖ®±ÈQ1£ºQ2=2£º1 | |
| D£® | ͨ¹ýÏßȦijһ½ØÃæµÄµçºÉÁ¿Ö®±Èq1£ºq2=1£º2 |
| A£® | ϵͳ»úеÄܲ»¶ÏÔö¼Ó | B£® | ϵͳ»úеÄÜÊØºã | ||
| C£® | ϵͳ¶¯Äܲ»¶ÏÔö¼Ó | D£® | ϵͳ¶¯Äܲ»±ä |