ÌâÄ¿ÄÚÈÝ
9£®Èçͼ1Ëùʾ£¬Á½¸ùÓëË®Æ½Ãæ³É¦È=30¡ã½ÇµÄ×ã¹»³¤¹â»¬½ðÊôµ¼¹ìƽÐзÅÖ㬵¼¹ì¼ä¾àΪL=1m£¬µ¼¹ìµ×¶Ë½ÓÓÐ×èֵΪ0.5¦¸µÄµç×èR£¬µ¼¹ìµÄµç×èºöÂÔ²»¼Æ£®Õû¸ö×°Öô¦ÓÚÔÈÇ¿´Å³¡ÖУ¬´Å³¡·½Ïò´¹Ö±ÓÚµ¼¹ìÆ½ÃæÐ±ÏòÉÏ£¬´Å¸ÐӦǿ¶ÈB=1T£®ÏÖÓÐÒ»ÖÊÁ¿Îªm=0.2kg¡¢µç×èΪ0.5¦¸µÄ½ðÊô°ôÓÃϸÉþͨ¹ý¹â»¬»¬ÂÖÓëÖÊÁ¿ÎªM=0.5kgµÄÎïÌåÏàÁ¬£¬Ï¸ÉþÓëµ¼¹ìÆ½ÃæÆ½ÐУ®½«½ðÊô°ôÓëMÓɾ²Ö¹ÊÍ·Å£¬°ôÑØµ¼¹ìÔ˶¯ÁË2mºó¿ªÊ¼×öÔÈËÙÔ˶¯£®Ô˶¯¹ý³ÌÖУ¬°ôÓëµ¼¹ìʼÖÕ±£³Ö´¹Ö±½Ó´¥£®£¨È¡ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£©Ç󣺣¨1£©½ðÊô°ôÔÈËÙÔ˶¯Ê±µÄËÙ¶È£»
£¨2£©°ô´ÓÊͷŵ½¿ªÊ¼ÔÈËÙÔ˶¯µÄ¹ý³ÌÖУ¬µç×èRÉϲúÉúµÄ½¹¶úÈÈ£»
£¨3£©Èô±£³Öijһ´óСµÄ´Å¸ÐӦǿ¶ÈB1²»±ä£¬È¡²»Í¬ÖÊÁ¿MµÄÎï¿éÀ¶¯½ðÊô°ô£¬²â³ö½ðÊô°ôÏàÓ¦µÄ×öÔÈËÙÔ˶¯µÄvÖµ£¬µÃµ½ÊµÑéͼÏóÈçͼ2Ëùʾ£¬Çë¸ù¾ÝͼÖеÄÊý¾Ý¼ÆËã³ö´ËʱµÄB1£»
£¨4£©¸Ä±ä´Å¸ÐӦǿ¶ÈµÄ´óСΪB2£¬B2=2B1£¬ÆäËûÌõ¼þ²»±ä£¬ÇëÔÚ×ø±êͼÉÏ»³öÏàÓ¦µÄv-MͼÏߣ¬²¢Çë˵Ã÷ͼÏßÓëMÖáµÄ½»µãµÄÎïÀíÒâÒ壮
·ÖÎö £¨1£©½ðÊô°ôÔÈËÙÔ˶¯Ê±£¬ÊÜÁ¦Æ½ºâ£¬Éþ×ÓµÄÀÁ¦´óСµÈÓÚMg£¬ÓÉÆ½ºâÌõ¼þºÍ°²ÅàÁ¦¹«Ê½FA=$\frac{{B}^{2}{L}^{2}v}{R}$Çó½âËÙ¶È£®
£¨2£©½ðÊô°ôÉÏ»¬µÄ¹ý³ÌÖУ¬MµÄÖØÁ¦ÊÆÄܼõСת»¯ÎªmµÄÖØÁ¦ÊÆÄÜ¡¢MºÍmµÄ¶¯Äܼ°µç·ÖеÄÄÚÄÜ£¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉÇó½âµç×èRÉϲúÉúµÄ½¹¶úÈÈ£»
£¨3£©ÓÉ£¨1£©ÖÐËÙ¶ÈÓëÖÊÁ¿µÄ¹ØÏµÊ½£¬·ÖÎöͼÏóµÄбÂÊÓë½Ø¾àµÄÒâÒ壬Çó½âB1£®
£¨4£©¸ù¾Ýº¯Êý¹ØÏµÊ½×÷³öͼÏó£®
½â´ð ½â£º£¨1£©½ðÊô°ô×öÔÈËÙÔ˶¯£¬´¦ÓÚÆ½ºâ״̬£¬
ÓÉÆ½ºâÌõ¼þµÃ£ºMg=mgsin¦È+$\frac{{B}^{2}{L}^{2}v}{R}$£¬
½âµÃ£ºv=4 m/s£»
£¨2£©¶Ôϵͳ£¬ÓÉÄÜÁ¿Êغ㶨Âɵãº
Mgs=mgssin¦È+2Q+$\frac{1}{2}$£¨M+m£©v2£¬
½âµÃ£¬Q=1.2J£»
£¨3£©¶Ô½ðÊô¸Ë£¬ÓÉÆ½ºâÌõ¼þµÃ£ºMg=mgsin¦È+$\frac{{B}^{2}{L}^{2}v}{R}$£¬
Ôòv=$\frac{£¨Mg-mgsin¦È£©R}{{B}^{2}{L}^{2}}$=$\frac{gR}{{B}^{2}{L}^{2}}$ M-$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$¢Ù£¬
ÓÉͼÏó¿ÉÖª£º$\frac{gR}{{B}^{2}{L}^{2}}$=$\frac{10}{0.3}$£¬½âµÃ£ºB1=0.54T£»
£¨4£©ÓÉv=$\frac{gR}{{B}^{2}{L}^{2}}$ M-$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$¿ÉÖª£¬µ±B2=2B1ʱ£¬
ͼÏßµÄбÂʼõСΪÔÀ´µÄ$\frac{1}{4}$£¬ÓëMÖáµÄ½»µã²»±ä£¬
ÓëMÖáµÄ½»µãΪM=msin¦È£¬Í¼ÏóÈçͼËùʾ£º![]()
´ð£º£¨1£©½ðÊô°ôÔÈËÙÔ˶¯Ê±µÄËÙ¶ÈΪ4m/s£»
£¨2£©°ô´ÓÊͷŵ½¿ªÊ¼ÔÈËÙÔ˶¯µÄ¹ý³ÌÖУ¬µç×èRÉϲúÉúµÄ½¹¶úÈÈÊÇ1.2J£»
£¨3£©¸ù¾ÝͼÖеÄÊý¾Ý¼ÆËã³ö´ËʱµÄB1Ϊ0.54T£»
£¨4£©Í¼ÏóÈçÉÏͼËùʾ£®
µãÆÀ ±¾ÌâÖиù¾ÝÎïÀí¹æÂɵõ½½âÎöʽ£¬ÔÙ·ÖÎöͼÏóµÄÊýѧÒâÒ壬²ÉÓÃÊýѧÉÏÊýÐνáºÏµÄ·½·¨£®
| A£® | ±¾´ÎʵÑéÏÂDZ×î´óÉî¶ÈΪ6m | |
| B£® | È«¹ý³ÌÖÐ×î´ó¼ÓËٶȵĴóСÊÇ2m/s2 | |
| C£® | ´Ó¿ªÊ¼µ½·µ»ØÍ¨¹ýµÄ×Ü·³ÌΪ720m | |
| D£® | ÏÂDZ¹ý³ÌÓë·µ»Ø¹ý³ÌµÄƽ¾ùËÙ¶ÈÏàͬ |
| A£® | ÑØÕÛÏßACBÔ˶¯Ê±×ö¹¦×î¶à | B£® | ÑØÖ±ÏßABÔ˶¯Ê±×ö¹¦×îÉÙ | ||
| C£® | ÑØÖ±ÏßABÔ˶¯Ê±£¬¾²µçÁ¦×ö¹¦ÎªqEd | D£® | ÑØÖ±ÏßABÔ˶¯Ê±×ö¹¦×î¶à |
| A£® | $\frac{{x}_{1}}{{t}_{1}}$$£¾\frac{{x}_{2}}{{t}_{2}}$$£¾\frac{{x}_{3}}{{t}_{3}}$ | B£® | $\frac{{x}_{1}}{{t}_{1}}$=$\frac{{x}_{2}}{{t}_{2}}$=$\frac{{x}_{3}}{{t}_{3}}$ | ||
| C£® | $\frac{{x}_{1}}{{{t}_{1}}^{2}}$=$\frac{{x}_{2}}{{{t}_{2}}^{2}}$=$\frac{{x}_{3}}{{{t}_{3}}^{2}}$ | D£® | Èô¦ÈÔö´ó£¬Ôò$\frac{x}{{t}_{2}}$µÄÖµ¼õС |