ÌâÄ¿ÄÚÈÝ
9£®£¨1£©ÔÚÏß¿ò½øÈë´Å³¡¹ý³ÌÖУ¬Í¨¹ýÏß¿òµ¼Ïßijһ½ØÃæµÄµçÁ¿q£»
£¨2£©ÔÚcd±ß¸Õ½øÈë´Å³¡Ê±£¬Ïß¿òËÙ¶È´óСv£»
£¨3£©Ïß¿ò´©Ô½´Å³¡ÇøÓò¹ý³ÌÖУ¬Ïß¿òËù²úÉúµÄÈÈÁ¿Q£»
£¨4£©´Å³¡ÇøÓòµÄ¸ß¶ÈH£»
£¨5£©Ïß¿ò´Ó¿ªÊ¼ÏÂÂäµ½À뿪´Å³¡¹ý³ÌËù¾ÀúµÄʱ¼ät£®
·ÖÎö £¨1£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨Âɺ͵çÁ÷µÄ¶¨ÒåʽÇó½âµçÁ¿q£®
£¨2£©¸ù¾ÝÏß¿ò½øÈëºÍ´©³ö´Å³¡¹ý³ÌµÄÏàËÆÐÔÖªµÀ£¬cd±ß½ø´Å³¡Ë²¼ä¼ÓËÙ¶ÈΪÁ㣬Óɰ²ÅàÁ¦ÓëËٶȵĹØÏµ¼°Æ½ºâÌõ¼þÇóÏß¿òµÄËÙ¶È´óСv£®
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺͰ²ÅàÁ¦ÓëËٶȵĹØÏµÊ½£¬Çó³öÏß¿ò¸Õ½øÈë´Å³¡Ê±µÄËÙ¶È£¬ÔÙÓÉÄÜÁ¿Êغ㶨ÂÉÇóÈÈÁ¿Q£®
£¨4£©Ïß¿òÍêÈ«Ôڴų¡ÖÐÔ˶¯Ê±²»²úÉú¸ÐÓ¦µçÁ÷£¬²»Êܰ²ÅàÁ¦£¬×ñÊØ»úеÄÜÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÇóH£®
£¨5£©Ñо¿Ïß¿ò½øÈë´Å³¡µÄ¹ý³Ì£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺͼÓËٶȵ͍Òåʽ£¬ÔËÓûý·Ö·¨Çóʱ¼ä£®ÓÉÔȱäËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆÊ±¼ä¹«Ê½Çó³öÏß¿ò´Ócd±ß¸Õ´Å³¡µ½ab±ß¸Õ³ö´Å³¡µÄʱ¼ä£®´Ó¶ø¿ÉÇóµÃ×Üʱ¼ä£®
½â´ð ½â£º£¨1£©ÔÚÏß¿ò½øÈë´Å³¡¹ý³ÌÖУ¬Í¨¹ýÏß¿òµ¼Ïßijһ½ØÃæµÄµçÁ¿ q=$\overline{I}t$=$\frac{\overline{E}}{R}t$=$\frac{B{L}_{1}\overline{v}t}{R}$=$\frac{B{L}_{1}{L}_{2}}{R}$
£¨2£©¸ù¾ÝÏß¿ò½øÈëºÍ´©³ö´Å³¡¹ý³ÌµÄÏàËÆÐÔÖªµÀ£¬cd±ß½ø´Å³¡Ë²¼ä¼ÓËÙ¶ÈΪÁ㣬ÔòÓÐ
mg=F°²£»
ÓÖ°²ÅàÁ¦ F°²=BIL1=B$\frac{B{L}_{1}v}{R}$L1=$\frac{{B}^{2}{L}_{1}^{2}v}{R}$
ÁªÁ¢½âµÃ v=$\frac{mgR}{{B}^{2}{L}_{1}^{2}}$
£¨3£©ÉèÏß¿ò¸Õ½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv0£®
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº$\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$-mg=ma=m$•\frac{g}{4}$
½âµÃ v0=$\frac{5mgR}{4{B}^{2}{L}_{1}^{2}}$
Ïß¿ò´©Ô½´Å³¡ÇøÓò¹ý³ÌÖУ¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂɵÃ
Q=2¡Á[£¨$\frac{1}{2}m{v}_{0}^{2}-\frac{1}{2}m{v}^{2}$£©+mgL1]=$\frac{9{m}^{3}{g}^{2}{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2mgL1
£¨4£©¶ÔÓÚÏß¿òÍêÈ«Ôڴų¡ÖÐÔ˶¯µÄ¹ý³Ì£¬ÓÉÔ˶¯Ñ§¹«Ê½ÓÐ
v02-v2=2g£¨H-2L2£©
½âµÃ H=$\frac{9{m}^{2}g{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2L2£®
£¨5£©Ïß¿ò×ÔÓÉÏÂÂäµÄʱ¼ä t1=$\frac{{v}_{0}}{g}$=$\frac{5mR}{4{B}^{2}{L}_{1}^{2}}$
Ñо¿Ïß¿ò½øÈë´Å³¡µÄ¹ý³Ì£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
$\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$-mg=ma=m$\frac{¡÷v}{¡÷t}$
¼´ $\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$¡÷t-mg¡÷t=m¡÷v
Á½±ßÇóºÍµÃ£º$\sum_{\;}^{\;}$£¨$\frac{{B}^{2}{L}_{1}^{2}{v}_{0}}{R}$¡÷t£©-$\sum_{\;}^{\;}$£¨mg¡÷t£©=$\sum_{\;}^{\;}$m¡÷v
¿ÉµÃ $\frac{{B}^{2}{L}_{1}^{2}}{R}$•L2-mgt2=m£¨v0-v£©
½âµÃÏß¿ò½øÈë´Å³¡µÄʱ¼ä t2=$\frac{{B}^{2}{L}_{1}^{2}{L}_{2}}{mgR}$-$\frac{mR}{{B}^{2}{L}_{1}^{2}}$
Ïß¿ò´Ócd±ß¸Õ´Å³¡µ½ab±ß¸Õ³ö´Å³¡µÄʱ¼äÉèΪt3£®
Ôò t3=$\frac{{v}_{0}-v}{g}$=$\frac{mR}{4{B}^{2}{L}_{1}^{2}}$
¹ÊÏß¿ò´Ó¿ªÊ¼ÏÂÂäµ½À뿪´Å³¡¹ý³ÌËù¾ÀúµÄʱ¼ä t=t1+2t2+t3=$\frac{2{B}^{2}{L}_{1}^{2}{L}_{2}}{mgR}$-$\frac{mR}{2{B}^{2}{L}_{1}^{2}}$£®
´ð£º
£¨1£©ÔÚÏß¿ò½øÈë´Å³¡¹ý³ÌÖУ¬Í¨¹ýÏß¿òµ¼Ïßijһ½ØÃæµÄµçÁ¿qÊÇ$\frac{B{L}_{1}{L}_{2}}{R}$£»
£¨2£©ÔÚcd±ß¸Õ½øÈë´Å³¡Ê±£¬Ïß¿òËÙ¶È´óСvÊÇ$\frac{mgR}{{B}^{2}{L}_{1}^{2}}$£»
£¨3£©Ïß¿ò´©Ô½´Å³¡ÇøÓò¹ý³ÌÖУ¬Ïß¿òËù²úÉúµÄÈÈÁ¿QÊÇ$\frac{9{m}^{3}{g}^{2}{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2mgL1£»
£¨4£©´Å³¡ÇøÓòµÄ¸ß¶ÈHÊÇ$\frac{9{m}^{2}g{R}^{2}}{32{B}^{4}{L}_{1}^{4}}$+2L2£»
£¨5£©Ïß¿ò´Ó¿ªÊ¼ÏÂÂäµ½À뿪´Å³¡¹ý³ÌËù¾ÀúµÄʱ¼ätÊÇ$\frac{2{B}^{2}{L}_{1}^{2}{L}_{2}}{mgR}$-$\frac{mR}{2{B}^{2}{L}_{1}^{2}}$£®
µãÆÀ ±¾ÌâÒª·ÖÎöÇå³þÏß¿òµÄÔ˶¯¹ý³Ì£¬ÊìÁ·ÍƵ¼³öµçÁ¿ºÍ°²ÅàÁ¦µÄ±í´ïʽ£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɺͼÓËٶȵ͍ÒåʽÇóÏß¿ò½øÈë´Å³¡µÄʱ¼äÊǹؼü£®
| A£® | ÖʵãÔÚt=1£®OsʱËù´¦µÄλÖÃΪx=+4$\sqrt{3}$cm | |
| B£® | ÖʵãÔÚt=1£®OsʱËù´¦µÄλÖÃΪx=-4$\sqrt{3}$cm | |
| C£® | ÓÉÆðʼλÖÃÔ˶¯µ½x=-4cm´¦ËùÐèµÄ×î¶Ìʱ¼äΪ$\frac{2}{3}$s | |
| D£® | ÓÉÆðʼλÁDÔ˶¯µ½x=-4cm´¦ËùÐèµÄ×î¶Ìʱ¼äΪ$\frac{1}{6}$s |
| A£® | ÎïÌåµÄÖÊÁ¿Îª3kg | B£® | ÎïÌåµÄ¼ÓËÙ¶È´óСΪ5m/s2 | ||
| C£® | µ¯»ÉµÄ¾¢¶ÈϵÊýΪ7.5N/cm | D£® | ÎïÌåÓ뵯»É·ÖÀëʱ¶¯ÄÜΪ0.4J |