ÌâÄ¿ÄÚÈÝ
·ÖÎö£º·Ö±ðÒÔÉÏÏÂÁ½²¿·ÖÆøÌåΪÑо¿¶ÔÏó£¬ÀûÓÃÀíÏëÆøÌå״̬·½³ÌºÍ²£Òâ¶ú¶¨ÂÉÇó½â£®
½â´ð£º½â£ºÉèÔ²»·¹ÜµÀÄÚÉÏÏÂÁ½²¿·ÖÆøÌåµÄ³õʼÌå»ýΪV0£¬¼ÓÈÈǰºóÁ½²¿·ÖÆøÌåµÄѹǿ·Ö±ðΪP0¡¢P£¬
Éϲ¿·ÖÆøÌåÌå»ýµÄÔö¼ÓÁ¿Îª¡÷V£¬¶ÔÉϲ¿·ÖÆøÌ壬¸ù¾ÝÀíÏëÆøÌå״̬·½³ÌÓУº
=
¶Ôϲ¿·ÖÆøÌ壬¸ù¾Ý²£Òâ¶ú¶¨ÂÉÓУºP0V0=P£¨V0-¡÷V£©
½âµÃ£º¡÷V=
V0
¹Ê»îÈûAµÄλÖÃÓëOµãµÄÁ¬ÏߺÍÊúÖ±·½ÏòµÄ¼Ð½ÇΪ£º¦È=45¡ã£®
´ð£º»îÈûAµÄλÖÃÓëOµãµÄÁ¬Ï߸úÊúÖ±·½ÏòOBÖ®¼äµÄ¼Ð½Ç¦ÈΪ45¡ã£®
Éϲ¿·ÖÆøÌåÌå»ýµÄÔö¼ÓÁ¿Îª¡÷V£¬¶ÔÉϲ¿·ÖÆøÌ壬¸ù¾ÝÀíÏëÆøÌå״̬·½³ÌÓУº
| P0V0 |
| T0 |
| P(V0+¡÷V) |
| T |
¶Ôϲ¿·ÖÆøÌ壬¸ù¾Ý²£Òâ¶ú¶¨ÂÉÓУºP0V0=P£¨V0-¡÷V£©
½âµÃ£º¡÷V=
| 1 |
| 4 |
¹Ê»îÈûAµÄλÖÃÓëOµãµÄÁ¬ÏߺÍÊúÖ±·½ÏòµÄ¼Ð½ÇΪ£º¦È=45¡ã£®
´ð£º»îÈûAµÄλÖÃÓëOµãµÄÁ¬Ï߸úÊúÖ±·½ÏòOBÖ®¼äµÄ¼Ð½Ç¦ÈΪ45¡ã£®
µãÆÀ£º±¾Ìâ¹Ø¼üÊǶÔÁ½²¿·ÖÆøÌåÔËÓÃÆøÌå״̬·½³ÌÁÐʽºóÁªÁ¢Çó½â£¬²»ÄÑ£¬ÒªÓÃÄÍÐÄ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿