ÌâÄ¿ÄÚÈÝ
19£®| A£® | ÎÀÐÇaºÍÎÀÐÇbµÄÏßËÙ¶ÈÖ®±ÈΪ$\frac{1}{\sqrt{2}}$ | |
| B£® | ÎÀÐÇaºÍÎÀÐÇbµÄÏßËÙ¶ÈÖ®±ÈΪ$\frac{1}{\sqrt{8}}$ | |
| C£® | ÎÀÐÇaºÍÎÀÐÇbµÄÖÜÆÚÖ®±ÈΪ$\sqrt{2}$£º1 | |
| D£® | ÎÀÐÇaºÍÎÀÐÇbµÄÏòÐļÓËÙ¶ÈÖ®±ÈΪ1£º2 |
·ÖÎö ¸ù¾ÝÍòÓÐÒýÁ¦µÈÓÚÏòÐÄÁ¦£¬·Ö±ðÇó³öÁ½ÎÀÐÇÏßËٶȵıí´ïʽ£¬ÔÙÇó½âÏßËÙ¶ÈÖ®±È£®¸ù¾ÝÖÜÆÚ¹«Ê½ÇóÖÜÆÚÖ®±È£®ÓÉÏòÐļÓËٶȹ«Ê½½áºÏÇóÏòÐļÓËÙ¶ÈÖ®±È£®
½â´ð ½â£ºAB¡¢¸ù¾ÝÍòÓÐÒýÁ¦µÈÓÚÏòÐÄÁ¦£¬µÃ£º
¶ÔÎÀÐÇa£ºG$\frac{M{m}_{a}}{{r}^{2}}$=${m}_{a}\frac{{v}_{a}^{2}}{r}$£¬µÃ va=$\sqrt{\frac{GM}{r}}$
¶ÔÎÀÐÇb£ºG$\frac{2M{m}_{b}}{{r}^{2}}$=${m}_{b}\frac{{v}_{b}^{2}}{r}$£¬µÃ vb=$\sqrt{\frac{2GM}{r}}$£¬¿ÉµÃ va£ºvb=1£º$\sqrt{2}$£¬¹ÊAÕýÈ·£¬B´íÎó£®
C¡¢ÎÀÐÇaºÍÎÀÐÇbµÄÖÜÆÚÖ®±ÈΪ Ta£ºTb=$\frac{2¦Ðr}{{v}_{a}}$£º$\frac{2¦Ðr}{{v}_{b}}$=$\sqrt{2}$£º1£¬¹ÊCÕýÈ·£®
D¡¢ÎÀÐÇaºÍÎÀÐÇbµÄÏòÐļÓËÙ¶ÈÖ®±ÈΪ aa£ºab=$\frac{{v}_{a}^{2}}{r}$£º$\frac{{v}_{b}^{2}}{r}$=1£º2£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºACD
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÒª½¨Á¢ÎÀÐÇÔ˶¯µÄÄ£ÐÍ£¬×¥×¡ÍòÓÐÒýÁ¦µÈÓÚÏòÐÄÁ¦Õâһ˼·£¬ÍƵ¼³öÏßËÙ¶È¡¢ÖÜÆÚµÈµÄ±í´ïʽ£®
| A£® | HJ-1CµÄ·¢ÉäËÙ¶È´óÓÚ11.2km/s | |
| B£® | ¡°Ì칬һºÅ¡±µÄ¶¯ÄÜ´óÓÚHJ-1CµÄ¶¯ÄÜ | |
| C£® | ¡°Ì칬һºÅ¡±µÄÖÜÆÚ´óÓÚHJ-1CµÄÖÜÆÚ | |
| D£® | ¡°Ì칬һºÅ¡±µÄ½ÇËÙ¶È´óÓÚHJ-1CµÄ½ÇËÙ¶È |
| A£® | 2£º1 | B£® | 3£º2 | C£® | 4£º3 | D£® | 8£º9 |
| A£® | µçÔ´µç¶¯ÊÆÎª2.0 V | |
| B£® | µçÔ´ÄÚ×èΪ$\frac{1}{3}$¦¸ | |
| C£® | µçÔ´¶Ì·ʱµçÁ÷Ϊ6.0A | |
| D£® | µç··¶ËµçѹΪ1.0 Vʱ£¬µç·ÖеçÁ÷Ϊ5.0 A |
| A£® | ²¨Ô´ÕýÔÚÏòAÔ˶¯ | B£® | ²¨Ô´ÕýÔÚÏòCÔ˶¯ | ||
| C£® | BµãµÄ¹Û²ìÕß½ÓÊÕµ½µÄƵÂÊ×îµÍ | D£® | DµãµÄ¹Û²ìÕß½ÓÊÕµ½µÄƵÂÊ×î¸ß |
| A£® | µ¯»ÉÔÚµÚ1sÄ©ÓëµÚ3sÄ©µÄ³¤¶ÈÏàͬ | |
| B£® | ¼òгÔ˶¯µÄ½ÇËٶȦØ=$\frac{¦Ð}{4}$rad/s | |
| C£® | µÚ3sÄ©Õñ×ÓµÄÎ»ÒÆ´óСΪ$\frac{\sqrt{2}}{2}$A | |
| D£® | ´ÓµÚ3sÄ©µ½µÚ5sÄ©£¬Õñ×ÓµÄËÙ¶È·½Ïò·¢Éú±ä»¯ |