ÌâÄ¿ÄÚÈÝ
16£®ÀûÓÃÈçͼ1ËùʾµÄ×°ÖÿÉÒÔ×öÁ¦Ñ§ÖеÄһЩʵÑ飬ÒÑÖª½»Á÷µçµÄƵÂÊΪf£¬Ð¡³µÖÊÁ¿ÎªM£¬¹³ÂëÖÊÁ¿Îªm£®¢ÙÈç¹ûÀûÓÃËüÀ´Ì½¾¿ÎïÌåµÄ¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹ØÏµÊ±£¬ÎªÊ¹Ð¡³µËùÊܵĺÏÍâÁ¦µÈÓÚϸÏßµÄÀÁ¦£¬Ó¦¸Ã²ÉÈ¡µÄ´ëÊ©ÊÇÆ½ºâĦ²ÁÁ¦£¬ÒªÊ¹Ï¸ÏßµÄÀÁ¦Ô¼µÈÓÚ¹³ÂëµÄ×ÜÖØÁ¿£¬Ó¦¸ÃÂú×ãµÄÌõ¼þÊÇMÔ¶´óÓÚm£¨Ìî¡°´óÓÚ¡±¡¢¡°Ô¶´óÓÚ¡±¡¢¡°Ð¡ÓÚ¡±»ò¡°Ô¶Ð¡ÓÚ¡±£©£®
¢ÚÔÚÂú×ãÁËС³µËùÊܵĺÏÍâÁ¦µÈÓÚϸÏßµÄÀÁ¦µÄÌõ¼þÏ£¬ÇÒʹϸÏßµÄÀÁ¦µÈÓÚ¹³ÂëµÄ×ÜÖØÁ¿£¬Èç¹ûÀûÓÃËüÀ´Ì½¾¿ÍâÁ¦×ö¹¦Ó붯ÄܵĹØÏµÊ±µÃµ½µÄÖ½´øÈçͼ2Ëùʾ£®OΪС³µ¿ªÊ¼Ô˶¯´òϵĵÚÒ»µã£¬A¡¢B¡¢CΪ¹ý³ÌÖеÄÈý¸öÏàÁڵļÆÊýµã£¬ÏàÁڵļÆÊýµãÖ®¼äÓÐËĸöµãûÓбê³ö£¬ÓйØÊý¾ÝÈçͼ2Ëùʾ£¬ÒªÌ½¾¿Ð¡³µÔ˶¯µÄ¶¯Äܶ¨Àí£¬ÒªÂú×ãÒ»¸öÔõÑùµÄ¹ØÏµÊ½mghB=$\frac{M£¨{h}_{C}-{h}_{A}£©^{2}{f}^{2}}{200}$£¨ÓÃÌâÖеÄ×Öĸ·ûºÅ±íʾ£©£®
·ÖÎö ¢ÙΪÁËʹºÏÁ¦µÈÓÚϸÏßµÄÀÁ¦£¬ÐèÆ½ºâĦ²ÁÁ¦£¬ÎªÁËʹϸÏßµÄÀÁ¦µÈÓÚ¹³ÂëµÄ×ÜÖÊÁ¿£¬MÓ¦Ô¶´óÓÚm£®
¢Ú¸ù¾Ý¶¯Äܶ¨ÀíµÃ³öС³µÓ¦Âú×ãµÄ¹ØÏµÊ½£®
½â´ð ½â£º¢ÙΪʹС³µËùÊܵĺÏÍâÁ¦µÈÓÚϸÏßµÄÀÁ¦£¬ÊµÑéǰÐèÆ½ºâĦ²ÁÁ¦£»
¶ÔϵͳÔËÓÃÅ£¶ÙµÚ¶þ¶¨Âɵã¬ÓÐmg=£¨M+m£©a£¬½âµÃa=$\frac{mg}{M+m}$£¬
¸ôÀë·ÖÎöµÃ£¬T=Ma=$\frac{Mmg}{M+m}$=$\frac{mg}{1+\frac{m}{M}}$£¬Öªµ±MÔ¶´óÓÚmʱ£¬Ï¸ÏßµÄÀÁ¦µÈÓÚ¹³ÂëµÄ×ÜÖØÁ¿£®
¢Ú¸ù¾Ý¶¯Äܶ¨ÀíµÃ£¬mghB=$\frac{1}{2}$MvB2£¬vB=$\frac{{h}_{C}-{h}_{A}}{2t}$=$\frac{£¨{h}_{C}-{h}_{A}£©f}{10}$£¬
Ҫ̽¾¿Ð¡³µÔ˶¯µÄ¶¯Äܶ¨Àí£¬ÒªÂú×ãµÄ¹ØÏµÊ½Îª£º
mghB=$\frac{M£¨{h}_{C}-{h}_{A}£©^{2}{f}^{2}}{200}$
¹Ê´ð°¸Îª£º¢ÙƽºâĦ²ÁÁ¦£¬Ô¶´óÓÚ£» ¢ÚmghB=$\frac{M£¨{h}_{C}-{h}_{A}£©^{2}{f}^{2}}{200}$£®
µãÆÀ ¸ÃÌâÉæ¼°µÄʵÑé±È½Ï¶à£¬ÒªÃ÷ȷʵÑéÔÀí£¬¸ù¾ÝÎïÀí¶¨ÂÉÇó³öÏàÓ¦µÄ±í´ïʽ£¬È»ºó¿ÉÒÔÌÖÂ۵óöÏàÓ¦½áÂÛ£®
| A£® | A¡¢BÁ½µãµÄµç³¡Ç¿¶ÈºÍµçÊÆ¾ùÏàͬ | |
| B£® | Á£×Ó¾¹ýA¡¢BÁ½µãʱµÄËÙ¶È´óСÏàͬ | |
| C£® | ×Ó¾¹ýA¡¢BÁ½µãʱµÄ¼ÓËÙ¶ÈÏàͬ | |
| D£® | Á£×Ó¾¹ýA¡¢BÁ½µãʱµçÊÆÄÜÏàͬ |
| A£® | µç¼üS±ÕºÏʱ£¬µÆÅÝD1ºÜÁÁ£¬D2Öð½¥±äÁÁ£¬×îºóÒ»ÑùÁÁ | |
| B£® | µç¼üS±ÕºÏʱ£¬µÆÅÝD1¡¢D2ͬʱÁÁ£¬È»ºóD1»á±ä°µÖ±µ½²»ÁÁ£¬D2¸üÁÁ | |
| C£® | µç¼üS¶Ï¿ªÊ±£¬µÆÅÝD2ËæÖ®Ï¨Ã𣬶øD1»áÁÁһϺó²ÅϨÃð | |
| D£® | µç¼üS¶Ï¿ªÊ±£¬µÆÅÝD1ËæÖ®Ï¨Ã𣬶øD2»áÉÁÁÁһϺó²ÅϨÃð |
| A£® | СÇòÁ¢¼´»ñµÃ$\frac{kx}{m}$µÄ¼ÓËÙ¶È | B£® | СÇòµÄ˲ʱ¼ÓËÙ¶ÈΪ0 | ||
| C£® | СÇòÂ䵨µÄʱ¼äµÈÓÚ$\sqrt{\frac{2h}{g}}$ | D£® | СÇòÂ䵨µÄËÙ¶È´óÓÚ$\sqrt{2gh}$ |
| A£® | ºË·´Ó¦·½³ÌÊÇ${\;}_{1}^{1}$H+${\;}_{0}^{1}$n¡ú${\;}_{1}^{3}$H+¦Ã | |
| B£® | ¾Û±ä·´Ó¦ÖеÄÖÊÁ¿¿÷Ëð¡÷m=m3-£¨m1+m2£© | |
| C£® | ·øÉä³öµÄ¦Ã¹â×ÓµÄÄÜÁ¿E=£¨m3-m1-m2£©c2 | |
| D£® | ¦Ã¹â×ӵIJ¨³¤¦Ë=$\frac{h}{{£¨{m_1}+{m_2}-{m_3}£©c}}$ |