ÌâÄ¿ÄÚÈÝ
19£®ÈçͼËùʾ£¬Óɰ뾶ΪR=1.8mµÄ¹â»¬°ëÔ²»·ºÍ¹â»¬Ë®Æ½ÃæAMÔÚMµãÏàÇУ¬¹¹³ÉÒ»ÊúÖ±¹ìµÀ£®ÔÚMN×ó²àÇøÓòÓÐÊúÖ±ÏòϵÄÔÈÇ¿µç³¡E£»Ë®Æ½¹ìµÀµÄÓÒ¶ËÓÐһѹËõµÄµ¯»É£¬TΪһ¿¨»·£¬ÊÍ·ÅTºó´øÕýµçСÇò±»µ¯³ö£¬Ç¡ºÃÑØ¹â»¬°ëÔ²»·ÄÚ²àÔ˶¯£¬À뿪NµãºóÇ¡ºÃ´òÔÚÓëÔ²ÐÄOµÈ¸ßµÄºñ¶È²»¼ÆµÄ³¤Ä¾°åCDµÄ×ó¶Ë£®ÒÑÖª´øµçСÇòµÄµçÁ¿q=4¡Á10-4C£¬ÖÊÁ¿m=0.2kg£¬³¤Ä¾°åCDµÄ³¤¶ÈL=1.2m£®³¤Ä¾°å×ó¶ËCµ½Ô²ÐÄOµÄ¾àÀëx=3.6m£¬gÈ¡10m/s2£®Ç󣺣¨1£©Ð¡Çòͨ¹ýNµãµÄËÙ¶ÈvN
£¨2£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈE
£¨3£©ÒªÊ¹´øµçСÇò´òÔÚ³¤Ä¾°åµÄÓÒ¶ËD£¬ÔòѹËõµÄµ¯»É´¢´æµÄµ¯ÐÔÊÆÄÜEPΪ¶àÉÙ£¿
·ÖÎö £¨1£©¸ù¾ÝƽÅ×Ô˶¯µÄ¸ß¶ÈÇó³öƽÅ×Ô˶¯µÄʱ¼ä£¬½áºÏË®Æ½Î»ÒÆÇó³öNµãµÄËÙ¶È£®
£¨2£©×¥×¡Ð¡ÇòÇ¡ºÃͨ¹ý×î¸ßµã£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬Çó³öÔÈÇ¿µç³¡µÄµç³¡Ç¿¶È£®
£¨3£©¸ù¾ÝƽÅ×Ô˶¯µÄ¹æÂÉÇó³öNµãµÄËÙ¶È£¬½áºÏ¶¯Äܶ¨ÀíÇó³öѹËõʱµ¯»É´¢´æµÄµ¯ÐÔÊÆÄÜ£®
½â´ð ½â£º£¨1£©Ð¡ÇòÀ뿪NµãºóÇ¡ºÃ´òÔÚÓëÔ²ÐÄOµÈ¸ßµÄºñ¶È²»¼ÆµÄ³¤Ä¾°åCDµÄ×ó¶Ë£¬
¸ù¾ÝR=$\frac{1}{2}g{t}^{2}$µÃ£¬t=$\sqrt{\frac{2R}{g}}=\sqrt{\frac{2¡Á1.8}{10}}s=0.6s$£¬
ÔòСÇòͨ¹ýNµãµÄËÙ¶È${v}_{N}=\frac{x}{t}=\frac{3.6}{0.6}m/s=6m/s$£®
£¨2£©ÒòΪСÇòÇ¡ºÃÑØ°ëÔ²»·ÄÚ²àÔ˶¯£¬ÔÚ×î¸ßµã£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬
$mg+qE=m\frac{{{v}_{N}}^{2}}{R}$£¬
´úÈëÊý¾Ý½âµÃE=5¡Á103N/C£®
£¨3£©ÒªÊ¹Ð¡ÇòÂäÔÚDµã£¬×öƽÅ×Ô˶¯Ê±ÓУº$R=\frac{1}{2}g{t}^{2}$£¬x+L=vt£¬
¸ù¾Ý¶¯Äܶ¨ÀíµÃ£¬${E}_{p}-qE•2R-mg•2R=\frac{1}{2}m{v}^{2}$£¬
´úÈëÊý¾ÝÁªÁ¢½âµÃEp=20.8J£®
´ð£º£¨1£©Ð¡Çòͨ¹ýNµãµÄËÙ¶ÈΪ6m/s£»
£¨2£©ÔÈÇ¿µç³¡µÄµç³¡Ç¿¶ÈEΪ5¡Á103N/C£»
£¨3£©ÒªÊ¹´øµçСÇò´òÔÚ³¤Ä¾°åµÄÓÒ¶ËD£¬ÔòѹËõµÄµ¯»É´¢´æµÄµ¯ÐÔÊÆÄÜEPΪ20.8J£®
µãÆÀ ±¾Ì⿼²éÁËÔ²ÖÜÔ˶¯¡¢Æ½Å×Ô˶¯ºÍÅ£¶Ù¶¨ÂÉ¡¢ÄÜÁ¿ÊغãµÄ×ÛºÏÔËÓã¬ÖªµÀÔ²ÖÜÔ˶¯×î¸ßµãµÄÁÙ½çÇé¿ö£¬ÒÔ¼°Æ½Å×Ô˶¯ÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
| A£® | $\frac{Bdv}{R}$ | B£® | $\frac{Bdv}{2R}$ | C£® | $\frac{2Bdv}{R}$ | D£® | $\frac{Bdv}{3R}$ |
| A£® | ½öÔö´óR1µÄ×èÖµ£¬Ó͵ÎÏòÉÏÔ˶¯ | |
| B£® | ½öÔö´óR2µÄ×èÖµ£¬Ó͵ÎÏòÏÂÔ˶¯ | |
| C£® | ½ö¼õСÁ½°å¼äµÄ¾àÀ룬Ó͵ÎÏòÉÏÔ˶¯ | |
| D£® | ¶Ï¿ªµç¼üS£¬Ó͵ÎÏòÏÂÔ˶¯ |
| A£® | ÔÈÇ¿µç³¡µÄ³¡Ç¿·½ÏòÓÉCÖ¸ÏòF | B£® | ÔÈÇ¿µç³¡µÄ³¡Ç¿·½ÏòÓÉFÖ¸ÏòC | ||
| C£® | ÔÈÇ¿µç³¡µÄ³¡Ç¿·½ÏòÓÉCÖ¸ÏòA | D£® | ÔÈÇ¿µç³¡µÄ³¡Ç¿·½ÏòÓÉAÖ¸ÏòC |
| A£® | bµãµÄµç³¡Ç¿¶ÈÒ»¶¨±Èaµã´ó | B£® | µç³¡Ïß·½ÏòÒ»¶¨´ÓbÖ¸Ïòa | ||
| C£® | bµãµÄµçÊÆÒ»¶¨±Èaµã¸ß | D£® | ¸ÃµçºÉµÄ¶¯ÄÜÒ»¶¨¼õÉÙ |
| A£® | ÖØÁ¦µÄƽ¾ù¹¦ÂÊ$\overline{{P}_{A}}$£¼$\overline{{P}_{B}}$ | B£® | ÖØÁ¦µÄƽ¾ù¹¦ÂÊ$\overline{{P}_{A}}$=$\overline{{P}_{B}}$ | ||
| C£® | ÖØÁ¦µÄ˲ʱ¹¦ÂÊPA£¼PB | D£® | ÖØÁ¦µÄ˲ʱ¹¦ÂÊPA=PB |