ÌâÄ¿ÄÚÈÝ
10£®£¨1£©Ïä×Ó´ÓAµãµ½BµãËùÓõÄʱ¼ä¼°Ïä×Ó»¬µ½Ô²ÐιìµÀµ×¶Ëʱ¶Ô¹ìµÀµÄѹÁ¦´óС£»
£¨2£©ÈôÐÐÀîÏä·ÅÉÏAµãʱ¸øËüÒ»¸ö5m/sµÄˮƽÏòÓҵijõËÙ¶È£¬µ½´ïBµãʱÈç¹ûû±»¼ñÆð£¬ÔòÏä×ÓÀ뿪ԲÐιìµÀ×î¸ßµãºó»¹ÄÜÉÏÉý¶à´ó¸ß¶È£¿ÔÚÈçͼ2¸ø¶¨µÄ×ø±êϵÖж¨ÐÔ»³öÏä×Ó´ÓAµãµ½×î¸ßµã¹ý³ÌÖÐËÙÂÊvËæÊ±¼ät±ä»¯µÄͼÏó£®
·ÖÎö £¨1£©ÎïÌåÔÚ´«ËÍ´øÏÈ×öÔȼÓËÙÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍËٶȹ«Ê½Çó³öËÙ¶ÈÔö´óµ½Óë´«ËÍ´øÏàµÈËùÓõÄʱ¼ä£¬²¢Çó³ö´Ë¹ý³ÌµÄÎ»ÒÆ£¬Óë´«ËÍ´øµÄ³¤¶È±È½Ï£¬·ÖÎöÎïÌåÄÜ·ñ×öÔÈËÙÔ˶¯£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢µÚÈý¶¨ÂɽáºÏÇó½âÎïÌå¶Ô¹ìµÀµÄѹÁ¦£®
£¨2£©¸ù¾ÝÔ˶¯Ñ§ËÙ¶ÈÎ»ÒÆ¹ØÏµÊ½Çó½â³öÎïÌåµ½´ïBµãµÄËÙ¶È£¬ÎïÌåÔÚÔ²ÐιìµÀÉÏÔ˶¯Ê±»úеÄÜÊØºã£¬ÁÐʽ¿ÉÇó³öÏä×ÓÉÏÉýµÄ¸ß¶È£®
½â´ð ½â£º£¨1£©Æ¤´øµÄËÙ¶È v0=6m/s
Ïä×ÓÔÚ´«ËÍ´øÉÏÔȼÓËÙÔ˶¯µÄ¼ÓËÙ¶È a=$\frac{¦Ìmg}{m}$=¦Ìg=1m/s2![]()
ÉèÏä×ÓÔÚBµãµÄËÙ¶ÈΪ vB£¬ÓÉ${v}_{B}^{2}$=2ax
½âµÃ£ºvB=4m/s£¼v0
ËùÒÔÏä×Ó´ÓAµãµ½BµãÒ»Ö±×öÔȼÓËÙÔ˶¯
ÓÉx=$\frac{1}{2}a{t}^{2}$£¬½âµÃ´ÓAµãµ½BµãÔ˶¯µÄʱ¼äΪ t=4s
Ïä×ÓÔÚÔ²ÐιìµÀ×îµÍµãʱ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
F-mg=m$\frac{{v}_{B}^{2}}{R}$
½âµÃ£ºF=120N
ÓÉÅ£¶ÙµÚÈý¶¨ÂÉÖªÏä×Ó¶Ô¹ìµÀµÄѹÁ¦´óСΪ120N£®
£¨2£©ÉèÏä×ÓËÙ¶È´ïµ½v0=6m/sʱ
Î»ÒÆÎª x¡ä£¬Ôò${v}_{0}^{2}$-${x}_{A}^{2}$=2ax¡ä
½âµÃx¡ä=5.5m£¼8m
Òò´ËÏä×ÓÏÈÔȼÓËÙÔ˶¯Ò»¶Îʱ¼ä£¬ËÙ¶È´ïµ½6m/sºó
¿ªÊ¼×öÔÈËÙÔ˶¯£¬¼´ÔÚBµãµÄËÙ¶ÈΪ v0
ÓÉ»úеÄÜÊØºã¶¨Âɵãº$\frac{1}{2}m{v}_{0}^{2}$=mg£¨R+h£©
½âµÃÏä×ÓÔÚÔ²ÐιìµÀÉÏÉÏÉýµÄ¸ß¶È h=1m
Ïä×Ó´ÓAµãµ½×î¸ßµã¹ý³ÌÖÐËÙÂÊvËæÊ±¼ät±ä»¯µÄͼÏóÈçͼ£®
´ð£º
£¨1£©Ïä×Ó´ÓAµãµ½BµãËùÓõÄʱ¼äΪ0.4s£®Ïä×Ó»¬µ½Ô²ÐιìµÀµ×¶Ëʱ¶Ô¹ìµÀµÄѹÁ¦´óСÊÇ120N£®
£¨2£©Ïä×ÓÀ뿪ԲÐιìµÀ×î¸ßµãºó»¹ÄÜÉÏÉýµÄ¸ß¶ÈÊÇ1m£¬¶¨ÐÔ»³öÏä×Ó´ÓAµãµ½×î¸ßµã¹ý³ÌÖÐËÙÂÊvËæÊ±¼ät±ä»¯µÄͼÏóÈçͼ£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÒªÕýÈ··ÖÎöÏä×ÓµÄÊÜÁ¦Çé¿ö£¬ÅÐ¶ÏÆäÔ˶¯Çé¿ö£¬ÒªÍ¨¹ý¼ÆËã½øÐзÖÎö£¬²»Äܼòµ¥µÄ¶¨ÐÔ·ÖÎö£¬Í¬Ê±ÒªÁé»îÑ¡ÔñÔ˶¯Ñ§¹«Ê½½â´ð£®
| A£® | »·ÐÄO´¦µç³¡Ç¿¶ÈΪÁã | |
| B£® | ÑØxÖáÕý·½Ïò´ÓOµãµ½ÎÞÇîÔ¶´¦µç³¡Ç¿¶ÈÔ½À´Ô½Ð¡ | |
| C£® | ÑØxÖáÕý·½ÏòÓÉMµãµ½NµãµçÊÆÔ½À´Ô½¸ß | |
| D£® | ½«Ò»ÕýÊÔ̽µçºÉÓÉMµãÒÆµ½Nµã£¬µçºÉµÄµçÊÆÄÜÔö¼Ó |
| A£® | ÎÞÂÛ¦ØÈ¡ºÎÖµ£¬Á½Îï¿éËùÊܵÄĦ²ÁÁ¦¶¼Ö¸ÏòÔ²ÐÄ | |
| B£® | µ±½ÇËÙ¶È?¡Ü$\sqrt{\frac{2¦Ìg}{5r}}$ʱ£¬Ï¸Ïß²»´æÔÚµ¯Á¦ | |
| C£® | µ±½ÇËÙ¶È?=$\sqrt{\frac{2¦Ìg}{3r}}$ʱ£¬Îï¿éAÓëÔ²Å̼䲻´æÔÚĦ²ÁÁ¦ | |
| D£® | µ±½ÇËÙ¶È?£¾$\sqrt{\frac{¦Ìg}{r}}$ʱ£¬Á½Îï¿é½«Ïà¶ÔÔ²ÅÌ»¬¶¯ |
| A£® | $\frac{{20\sqrt{3}}}{3}$cm | B£® | $5\sqrt{3}$cm | C£® | $\frac{{40\sqrt{3}}}{3}$cm | D£® | $20\sqrt{3}$cm |
| A£® | ¦ÕO=$\frac{1}{2}c+\frac{3}{8}a$ | B£® | ¦ÕP=c | C£® | ¦ÕO=$\frac{1}{2}$c-$\frac{1}{8}$a | D£® | ¦ÕP=c+$\frac{1}{4}$a |