ÌâÄ¿ÄÚÈÝ

8£®ÈçͼËùʾ£¬Ôڿռ佨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔÚµÚÒ»ÏóÏÞÄÚ¼ÓÉϵ糡ǿ¶È´óСΪE¡¢·½ÏòÑØ-yÖá·½ÏòµÄÔÈÇ¿µç³¡£¬µÚËÄÏóÏÞÄÚ¼ÓÉϵ糡ǿ¶È´óСҲΪE£¬·½ÏòÓë-xÖá·½Ïò³Éijһ¼Ð½ÇµÄÔÈÇ¿µç³¡£®ÏÖÓÐÒ»ÖÊÁ¿Îªm¡¢´øµçºÉÁ¿+qµÄ²»¼ÆÖØÁ¦µÄ΢Á£×ÔyÖáÉÏijµãP¿ªÊ¼ÒÔ³õËÙ¶Èv0ÑØ+xÖá·½Ïò½øÈëµÚÒ»ÏóÏÞ£¬Î¢Á£Í¨¹ý×ø±êΪ£¨+x0£¬0£©µÄQµãºóÒԺ͵ÚËÄÏóÏÞÄڵĵ糡´¹Ö±µÄ·½Ïò½øÈëµÚËÄÏóÏÞ£¬²»¼Æ¿ÕÆø×èÁ¦£®Çó£º
£¨1£©PµãµÄ×ø±ê£®
£¨2£©Î¢Á£¾­¹ýQµãʱµÄËÙ¶È£®
£¨3£©Î¢Á£´Ó½øÈëµÚËÄÏóÏÞ¿ªÊ¼µ½Ô˶¯µ½ºá×ø±ê×î´óËùÓõÄʱ¼ä£®

·ÖÎö £¨1£©Á£×ÓÔÚµÚÒ»ÏóÏÞ×öÀàÆ½Å×Ô˶¯£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½£¬×¥×¡µÈʱÐÔÇó³öÊúÖ±·½ÏòÉϵÄÎ»ÒÆ£¬´Ó¶øµÃ³öPµãµÄ×ø±ê£®
£¨2£©¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öÊúÖ±·ÖËÙ¶È£¬½áºÏƽÐÐËıßÐζ¨ÔòÇó³öQµãµÄËÙ¶È£®
£¨3£©¸ù¾ÝƽÐÐËıßÐζ¨ÔòÇó³ö½øÈëµÚËÄÏóÏÞʱËÙ¶ÈÓëˮƽ·½ÏòµÄ¼Ð½Ç£¬Á£×ÓÔÚµÚËÄÏóÏÞÒ²ÊÇ×öÀàÆ½Å×Ô˶¯£¬µ±ËÙ¶È·½ÏòÊúÖ±ÏòÏÂʱÔ˶¯µ½ºá×ø±êµÄ×î´óÖµ£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍËÙ¶Èʱ¼ä¹«Ê½Çó³öÔ˶¯µÄʱ¼ä£®

½â´ð ½â£º£¨1£©Á£×ÓÔÚµÚÒ»ÏóÏÞÄÚ×öÀàÆ½Å×Ô˶¯£¬ÔÚˮƽ·½ÏòÉϵÄÔ˶¯Ê±¼äΪ£º${t}_{1}=\frac{{x}_{0}}{{v}_{0}}$£¬
ÊúÖ±·½ÏòÉϵļÓËÙ¶È${a}_{1}=\frac{qE}{m}$£¬ÔòÊúÖ±·½ÏòÉϵÄÎ»ÒÆÎª£ºy=$\frac{1}{2}{a}_{1}{{t}_{1}}^{2}=\frac{1}{2}¡Á\frac{qE}{m}¡Á\frac{{{x}_{0}}^{2}}{{{v}_{0}}^{2}}$=$\frac{qE{{x}_{0}}^{2}}{2m{{v}_{0}}^{2}}$£®
ÔòPµãµÄ×ø±êΪ£¨0£¬$\frac{qE{{x}_{0}}^{2}}{2m{{v}_{0}}^{2}}$£©
£¨2£©Î¢Á£¾­¹ýQµãʱÊúÖ±·½ÏòÉϵÄËÙ¶ÈΪ£º${v}_{y}={a}_{1}{t}_{1}=\frac{qE{x}_{0}}{m{v}_{0}}$£¬
¸ù¾ÝƽÐÐËıßÐζ¨ÔòÖª£¬¾­¹ýQµãʱµÄËÙ¶ÈΪ£º${v}_{Q}=\sqrt{{{v}_{0}}^{2}+\frac{{q}^{2}{E}^{2}{{x}_{0}}^{2}}{{m}^{2}{{v}_{0}}^{2}}}$£®
£¨3£©Î¢Á£ÔÚµÚËÄÏóÏÞÖУ¬µ±Ëٶȵķ½ÏòÊúÖ±ÏòÏÂʱ£¬Ô˶¯µ½ºá×ø±ê×î´óÖµ£®
Éè½øÈëµÚËÄÏóÏÞʱËÙ¶È·½ÏòÓëxÖáµÄ¼Ð½ÇΪ¦È£¬ÔòÓУºtan$¦È=\frac{{v}_{y}}{{v}_{0}}=\frac{qE{x}_{0}}{m{{v}_{0}}^{2}}$£¬
΢Á£ÔÚµÚËÄÏóÏÞÖÐÒ²ÊÇ×öÀàÆ½Å×Ô˶¯£¬ËÙ¶È·½ÏòÊúÖ±ÏòÏÂʱ£¬Ñص糡·½ÏòµÄËÙ¶ÈÓëÊúÖ±·½ÏòµÄ¼Ð½ÇΪ¦È£¬
ÉèÑØµç³¡·½ÏòµÄËÙ¶ÈΪv¡ä£¬
$tan¦È=\frac{v}{v¡ä}$£¬
½âµÃ£º$v¡ä=\frac{v}{tan¦È}=\sqrt{{{v}_{0}}^{2}+\frac{{q}^{2}{E}^{2}{{x}_{0}}^{2}}{{m}^{2}{{v}_{0}}^{2}}}\frac{m{{v}_{0}}^{2}}{qE{x}_{0}}$£®
Ôò΢Á£´Ó½øÈëµÚËÄÏóÏÞ¿ªÊ¼µ½Ô˶¯µ½ºá×ø±ê×î´óËùÓõÄʱ¼äΪ£º
$t¡ä=\frac{v¡ä}{{a}_{1}}$=$\sqrt{{{v}_{0}}^{2}+\frac{{q}^{2}{E}^{2}{{x}_{0}}^{2}}{{m}^{2}{{v}_{0}}^{2}}}\frac{{m}^{2}{{v}_{0}}^{2}}{{q}^{2}{E}^{2}{x}_{0}}$£®
´ð£º£¨1£©PµãµÄ×ø±êΪ£¨0£¬$\frac{qE{{x}_{0}}^{2}}{2m{{v}_{0}}^{2}}$£©£®
£¨2£©Î¢Á£¾­¹ýQµãʱµÄËÙ¶ÈΪ$\sqrt{{{v}_{0}}^{2}+\frac{{q}^{2}{E}^{2}{{x}_{0}}^{2}}{{m}^{2}{{v}_{0}}^{2}}}$£®
£¨3£©Î¢Á£´Ó½øÈëµÚËÄÏóÏÞ¿ªÊ¼µ½Ô˶¯µ½ºá×ø±ê×î´óËùÓõÄʱ¼äΪ$\sqrt{{{v}_{0}}^{2}+\frac{{q}^{2}{E}^{2}{{x}_{0}}^{2}}{{m}^{2}{{v}_{0}}^{2}}}\frac{{m}^{2}{{v}_{0}}^{2}}{{q}^{2}{E}^{2}{x}_{0}}$£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕ´¦ÀíÀàÆ½Å×Ô˶¯µÄ·½·¨£¬ÖªµÀÁ£×ÓÔÚ´¹Ö±µç³¡·½ÏòÉÏ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚÑØµç³¡·½ÏòÉÏ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½×ÛºÏÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø