ÌâÄ¿ÄÚÈÝ
15£®| A£® | BP=$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{2}I}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$ | B£® | BP=$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{2}I}{£¨{R}^{2}+{x}^{2}£©}$ | ||
| C£® | BP=$\frac{{¦Ì}_{0}}{2}$•$\frac{RI}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$ | D£® | BP=$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{3}I}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$ |
·ÖÎö ÎïÀí¹«Ê½²»µ«¶ÔÓ¦ÎïÀíÁ¿µÄ¼ÆË㣬ͬʱ»¹ÄܽøÐе¥Î»µÄ»»Ë㣻¸ù¾Ýµ¥Î»¹ØÏµ¿ÉÈ·¶¨±í´ïʽÊÇ·ñºÏÀí£®
½â´ð ½â£ºÓÉÓÚB=$\frac{{¦Ì}_{0}}{2}$$•\frac{I}{R}$£¬ËùÒÔB=$\frac{{¦Ì}_{0}}{2}$$•\frac{I}{R}$¶ÔÓ¦µÄµ¥Î»ÊÇT£¬
A¡¢B=$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{2}I}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$=$\frac{{¦Ì}_{0}}{2}$$•\frac{I}{R}$$•\frac{{R}^{3}}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$£¬$\frac{{R}^{3}}{{£¨{R}^{2}+{x}^{2}£©}^{\frac{3}{2}}}$ÖзÖ×ÓÓë·ÖĸµÄµ¥Î»Ò»Ñù£¬Á¿¸ÙÊÇ1£¬ËùÒÔ$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{2}I}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$¶ÔÓ¦µÄµ¥Î»»»ËãΪT£»¹ÊAÕýÈ·£»
B¡¢B=$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{2}I}{£¨{R}^{2}+{x}^{2}£©}$=$\frac{{¦Ì}_{0}}{2}$$•\frac{I}{R}$•$\frac{{R}^{3}}{£¨{R}^{2}+{x}^{2}£©}$£¬$\frac{{R}^{3}}{£¨{R}^{2}+{x}^{2}£©}$ÖзÖ×ÓÊdz¤¶ÈµÄÈý´Î·½£¬·ÖĸÊdz¤¶ÈµÄ¶þ´Î·½£¬Á¿¸ÙÊÇ£ºm£¬¶ÔÓ¦µÄµ¥Î»»»ËãΪT•m£®¹ÊB´íÎó£»
C¡¢B=$\frac{{¦Ì}_{0}}{2}$•$\frac{RI}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$=$\frac{{¦Ì}_{0}}{2}$$•\frac{I}{R}$$\frac{{R}^{2}}{{£¨{R}^{2}+{x}^{2}£©}^{\frac{3}{2}}}$£¬$\frac{{R}^{2}}{{£¨{R}^{2}+{x}^{2}£©}^{\frac{3}{2}}}$ÖзÖ×ÓÊdz¤¶ÈµÄ¶þ´Î·½£¬·ÖĸÊdz¤¶ÈµÄÈý´Î·½£¬Á¿¸ÙÊÇ£º$\frac{1}{m}$µ¥Î»»»ËãΪ£º$\frac{T}{m}$£»¹ÊC´íÎó£»
D¡¢B=$\frac{{¦Ì}_{0}}{2}$•$\frac{{R}^{3}I}{£¨{R}^{2}+{x}^{2}£©^{\frac{3}{2}}}$=$\frac{{¦Ì}_{0}}{2}$$•\frac{I}{R}$$•\frac{{R}^{4}I}{{£¨{R}^{2}+{x}^{2}£©}^{\frac{3}{2}}}$£¬$\frac{{R}^{4}I}{{£¨{R}^{2}+{x}^{2}£©}^{\frac{3}{2}}}$ÖзÖ×ÓÊdz¤¶ÈµÄËĴη½£¬·ÖĸÊdz¤¶ÈµÄÈý´Î·½£¬Á¿¸ÙÊÇ£ºm£¬¶ÔÓ¦µÄµ¥Î»»»ËãΪT•m£»¹ÊD´íÎó£»
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÎïÀíÖеĵ¥Î»»»Ë㣬ҪעÒâÌå»áÎïÀí¹«Ê½ÖÐÎïÀíµ¥Î»µÄ»»Ëã¹ØÏµ£®
| A£® | Ð±ÃæÌåÒÔijһ¼ÓËÙ¶ÈÏòÓÒ¼ÓËÙÔ˶¯£¬FСÓÚmg | |
| B£® | Ð±ÃæÌåÒÔijһ¼ÓËÙ¶ÈÏòÓÒ¼ÓËÙÔ˶¯£¬F´óÓÚmg | |
| C£® | Ð±ÃæÌåÒÔijһ¼ÓËÙ¶ÈÏò×ó¼ÓËÙÔ˶¯£¬F´óÓÚmg | |
| D£® | Ð±ÃæÌåÒÔijһ¼ÓËÙ¶ÈÏò×ó¼ÓËÙÔ˶¯£¬FСÓÚmg |
A£®Ö±Á÷µçÔ´3V£¨ÄÚ×è¿É²»¼Æ£© B£®Ö±Á÷µçÁ÷±í0¡«600mA£¨ÄÚ×èÔ¼0.5¦¸£© C£®Ö±Á÷µçѹ±í0¡«3V£¨ÄÚ×èÔ¼3k¦¸£© D£®»¬¶¯±ä×èÆ÷£¨10¦¸£¬1A£©E£®»¬¶¯±ä×èÆ÷£¨1k¦¸£¬300mA£© F£®¿ª¹Ø¡¢µ¼ÏßÈô¸É
£¨1£©±¾ÊµÑéÖ묶¯±ä×èÆ÷Ñ¡ÓÃD£¨Ìî¡°D¡±»ò¡°E¡±£©
£¨2£©Ä³Í¬Ñ§Óõ¼Ïßa¡¢b¡¢c¡¢d¡¢e¡¢f¡¢gºÍhÁ¬½ÓµÄµç·Èçͼ1Ëùʾ£¬µç·ÖÐËùÓÐÔªÆ÷¼þ¶¼ÊÇÍêºÃµÄ£¬ÇÒµçѹ±íºÍµçÁ÷±íÒѵ÷Á㣮±ÕºÏ¿ª¹Øºó·¢ÏÖµçѹ±íµÄʾÊýΪ2V£¬µçÁ÷±íµÄʾÊýΪÁ㣬СµÆÅݲ»ÁÁ£¬Ôò¿ÉÈ·¶¨¶Ï·µÄµ¼ÏßÊÇd£»Èôµçѹ±íʾÊýΪÁ㣬µçÁ÷±íµÄʾÊýΪ0.3A£¬Ð¡µÆÅÝÁÁ£¬Ôò¶Ï·µÄµ¼ÏßÊÇh£»Èô·´¸´µ÷½Ú»¬¶¯±ä×èÆ÷£¬Ð¡µÆÅÝÁÁ¶È·¢Éú±ä»¯£¬µ«µçѹ±í¡¢µçÁ÷±íʾÊý²»Äܵ÷ΪÁ㣬Ôò¶Ï·µÄµ¼ÏßÊÇg£®
£¨3£©±íÖеĸ÷×éÊý¾ÝÊǸÃͬѧÔÚʵÑéÖвâµÃµÄ£¬¸ù¾Ý±í¸ñÖеÄÊý¾ÝÔÚÈçͼ3ËùʾµÄ·½¸ñÖ½ÉÏ×÷³ö¸ÃµÆÅݵķü°²ÌØÐÔÇúÏߣ®
| U/V | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
| I/A | 0 | 0.17 | 0.30 | 0.39 | 0.45 | 0.49 |
| A£® | ²¼ÀÊÔ˶¯¾ÍÊÇÒºÖдóÁ¿·Ö×ÓµÄÎÞ¹æÔòÔ˶¯ | |
| B£® | ²¼ÀÊÔ˶¯µÄ¾çÁҳ̶ÈÓëζÈÎÞ¹Ø | |
| C£® | ¹ÌÌåºÜÄѱ»Ñ¹Ëõ£¬ËµÃ÷¹ÌÌåÄÚ·Ö×ÓÖ®¼äÖ»ÓÐÏ໥µÄ³âÁ¦ | |
| D£® | ÎïÌåµÄζÈÔ½¸ß£¬·Ö×ÓÈÈÔ˶¯Ô½¾çÁÒ |