ÌâÄ¿ÄÚÈÝ
2£®ÈçͼËùʾ£¬ÊúÖ±Æ½ÃæxoyÄÚÓÐÈý¸ö¿í¶È¾ùΪLÊ×βÏà½ÓµÄµç³¡ÇøÓòABFE¡¢BCGFºÍCDHG£®Èý¸öÇøÓòÖзֱð´æÔÚ·½Ïò+y¡¢+y¡¢+xµÄÔÈÇ¿µç³¡£¬Æä³¡Ç¿´óС±ÈÀýΪ2£º1£º2£®ÏÖÓÐÒ»´øÕýµçµÄÎïÌåÒÔijһ³õËÙ¶È´Ó×ø±êΪ£¨0£¬L£©µÄPµãÉäÈëABFE³¡Çø£¬³õËÙ¶È·½ÏòˮƽÏòÓÒ£®ÎïÌåÇ¡´Ó×ø±êΪ£¨2L£¬$\frac{L}{2}$£©µÄQµãÉäÈëCDHG³¡Çø£¬ÒÑÖªÎïÌåÔÚABFEÇøÓòËùÊܵ糡Á¦ºÍËùÊÜÖØÁ¦´óСÏàµÈ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬ÎïÌå¿ÉÒÔÊÓ×÷Öʵ㣬yÖáÊúÖ±ÏòÉÏ£¬ÇøÓòÄÚÊúÖ±·½Ïòµç³¡×ã¹»´ó£®Ç󣺣¨1£©ÎïÌå½øÈëABFEÇøÓòʱµÄ³õËÙ¶È´óС£»
£¨2£©ÎïÌåÔÚADHEÇøÓòÔ˶¯µÄ×Üʱ¼ä£®
·ÖÎö £¨1£©·ÖÎöÎïÌåµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£ºÎïÌåÔÚABFEÇøÓòËùÊܵ糡Á¦ºÍËùÊÜÖØÁ¦´óСÏàµÈ£¬×öÔÈËÙÖ±ÏßÔ˶¯£®½øÈëBCGFºó£¬ÊÜÁ¦ÊúÖ±ÏòϵÄÖØÁ¦ºÍÊúÖ±ÏòÉϵĵ糡Á¦£¬×öÀàÆ½Å×Ô˶¯£®¸ù¾ÝÎïÌåµ½´ïQµÄËÙ¶È´óСºÍ·½Ïò£¬·ÖÎöÎïÌå½øÈëCDHGµÄÔ˶¯Çé¿ö£®ÔÚBCDFÇøÓò£¬ÎïÌå×öÀàÆ½Å×Ô˶¯£¬Ë®Æ½Î»ÒÆÎªL£¬ÊúÖ±Î»ÒÆÎª$\frac{L}{2}$£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬ÔËÓÃÔ˶¯µÄ·Ö½â·½·¨£¬Çó³ö³õËÙ¶È£®
£¨2£©ÎïÌåÔÚABFEÇøÓò×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÎ»ÒÆºÍ³õËÙ¶ÈÇó³öʱ¼ä£»ÔÚBCGFÇøÓò£¬ÎïÌå×öÀàÆ½Å×Ô˶¯£¬Çó³öÎïÌåµ½´ïQËÙ¶È´óСºÍ·½Ïò£¬ÎïÌå½øÈëCDHGÇøÓò£¬×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÎ»ÒÆ¹«Ê½½áºÏÇó³öʱ¼ä£¬ÔÙÇó³ö×Üʱ¼ä£®
½â´ð ½â£ºÉèÈý¸öÇøÓòµÄµç³¡Ç¿¶È´óСÒÀ´ÎΪ2E¡¢E¡¢2E£¬
ÎïÌåÔÚÈý¸öÇøÓòÔ˶¯µÄʱ¼ä·Ö±ðt1¡¢t2¡¢t3£®
£¨1£©ÔÚBCGFÇøÓò£¬¶ÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
mg-qE=ma2£¬ÓÉÌâÒâ¿ÉÖª£º2qE=mg£¬½âµÃ£ºa2=$\frac{1}{2}$g£¬
ÔÚˮƽ·½ÏòÓУºL=v0t£¬
ÔÚÊúÖ±·½ÏòÓУº$\frac{L}{2}$=$\frac{1}{2}$a2t22£¬
½âµÃ£ºv0=$\sqrt{\frac{gL}{2}}$£¬t2=$\sqrt{\frac{2L}{g}}$£»
£¨2£©ÔÚABEFÇøÓò£®¶ÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÔÚÊúÖ±·½ÏòÓУº2qE=mg
ÎïÌå×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓУºv0=$\sqrt{\frac{gL}{2}}$£¬t1=t2=$\sqrt{\frac{2L}{g}}$£¬
ÔÚBCGFÇøÓò£¬ÎïÌå×öÀàÆ½Å×Ô˶¯£¬ÓУºv0=$\sqrt{\frac{gL}{2}}$£¬t2=$\sqrt{\frac{2L}{g}}$£¬
ÔÚQµãÊúÖ±·½ÏòËÙ¶ÈΪ£ºvy=a2t2=$\sqrt{\frac{gL}{2}}$=v0£¬
ÔòQµãËÙ¶ÈΪ£ºvQ=$\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}$=$\sqrt{gL}$£¬Óëˮƽ·½Ïò¼Ð½ÇΪ45¡ã£¬
ÔÚCDHGÇøÓò ÓÉÓÚ2qE=mg£¬
¶ÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬F=$\sqrt{2}$mg£¬Óëˮƽ·½Ïò¼Ð½ÇΪ45¡ã£¬
ÓëËÙ¶È·½ÏòÏàͬ£¬ÎïÌå×öÔȼÓËÙÖ±ÏßÔ˶¯£¬
ˮƽ·½ÏòL=v0t3+$\frac{1}{2}$a3t32£¬½âµÃ£ºt3=$\frac{\sqrt{5}-1}{2}$$\sqrt{\frac{2L}{g}}$£¬
Ô˶¯×Üʱ¼ä£ºt=t1+t2+t3=$\frac{\sqrt{5}+3}{2}$$\sqrt{\frac{2L}{g}}$£»
´ð£º£¨1£©ÎïÌå½øÈëABFEÇøÓòʱµÄ³õËÙ¶È´óСΪ$\sqrt{\frac{gL}{2}}$£»
£¨2£©ÎïÌåÔÚADHEÇøÓòÔ˶¯µÄ×Üʱ¼äΪ$\frac{\sqrt{5}+3}{2}$$\sqrt{\frac{2L}{g}}$£®
µãÆÀ ´ËÌâÊÇ´øµçÌåÔڵ糡ºÍÖØÁ¦³¡µÄ¸´ºÏ³¡ÖÐÔ˶¯µÄÎÊÌ⣬¹Ø¼üÊÇ·ÖÎöÎïÌåµÄÊÜÁ¦Çé¿öºÍÔ˶¯Çé¿ö£®ÀàÆ½Å×Ô˶¯ÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½âµÄ·½·¨Ñо¿£¬ÔȼÓËÙÖ±ÏßÔ˶¯¸ù¾ÝÅ£¶Ù¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½áºÏÑо¿£®
| A£® | t2ʱ¿Ì£¬µ¯»ÉµÄÐαäÁ¿Îª0 | |
| B£® | t1ʱ¿Ì£¬µ¯»ÉÐαäÁ¿Îª$\frac{mgsin¦È+ma}{k}$ | |
| C£® | ´Ó¿ªÊ¼µ½t1ʱ¿Ì£¬ÀÁ¦FÖð½¥Ôö´ó | |
| D£® | ´Ó¿ªÊ¼µ½t1ʱ¿Ì£¬ÀÁ¦F×öµÄ¹¦±Èµ¯»ÉÁ¦×öµÄ¹¦ÉÙ |
| A£® | µ¼Ìå¿òcd±ßÁ½¶ËµçÊÆ²îµÄ´óСÏàͬ | B£® | µ¼Ìå¿òÖвúÉúµÄ½¹¶úÈÈÏàͬ | ||
| C£® | ͨ¹ýµ¼Ìå¿òijһ½ØÃæµÄµçºÉÁ¿²»Í¬ | D£® | µ¼Ìå¿òcd±ßÖеĸÐÓ¦µçÁ÷·½Ïò²»Í¬ |
| A£® | ¼õСīÖ΢Á£Ëù´øµÄµçºÉÁ¿ | B£® | ¼õСīÖ΢Á£µÄÖÊÁ¿ | ||
| C£® | ¼õСīÖ΢Á£µÄÅç³öËÙ¶È | D£® | Ôö´óƫת°å¼äµÄµçѹ |
| A£® | °²ÅàÁ¦¶Ôab°ôËù×öµÄ¹¦ÏàµÈ | |
| B£® | µçÁ÷ͨ¹ýÕû¸ö»ØÂ·Ëù×öµÄ¹¦ÏàµÈ | |
| C£® | Õû¸ö»ØÂ·²úÉúµÄÈÈÁ¿ÏàµÈ | |
| D£® | µ½Í£Ö¹Ô˶¯Ê±£¬°ôÁ½´ÎÔ˶¯¾àÀëÏàµÈ |