ÌâÄ¿ÄÚÈÝ
3£®£¨1£©Ó¦¸ÃÑ¡ÔñµÄʵÑéµç·ÊÇͼ1Öеļף¨Ñ¡Ìî¡°¼×¡±»ò¡°ÒÒ¡±£©£®
£¨2£©Ä³Î»Í¬Ñ§¸ù¾Ý¼Ç¼µÄÊý¾Ý½«¶ÔÓ¦µãÒѾ±êÔÚÈçͼ2ËùʾµÄ×ø±êÖ½ÉÏ£¬Ç뻳öU-IͼÏߣ®
£¨3£©¸ù¾Ý£¨2£©ÖÐËù»Í¼Ï߿ɵóö¸Éµç³ØµÄµç¶¯ÊÆE=1.5V£¬ÄÚµç×èr=0.89¦¸£®£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
£¨4£©ÊµÑéÖУ¬Ëæ×Å»¬¶¯±ä×èÆ÷»¬Æ¬µÄÒÆ¶¯£¬µçѹ±íµÄʾÊýU¼°¸Éµç³ØµÄÊä³ö¹¦ÂÊP¶¼»á·¢Éú±ä»¯£®Èçͼ3ʾÒâͼÖÐÄÜÕýÈ··´Ó³P-U¹ØÏµµÄÊÇC£®
·ÖÎö £¨1£©·ÖÎöͼʾµç·½á¹¹£¬ÔÙ¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂɽøÐзÖÎö£¬´Ó¶øÈ·¶¨¶ÔÓ¦µÄµç·ͼ£»
£¨2£©Ó¦ÓÃÃèµã·¨×÷³öͼÏó£»
£¨3£©¸ù¾ÝµçÔ´µÄU-IͼÏóÇó³öµçÔ´µç¶¯ÊÆÓëÄÚ×裻
£¨4£©Çó³öµçÔ´Êä³ö¹¦Âʱí´ïʽ£¬Ã÷È·µçÔ´µÄÊä³ö¹¦ÂÊËæÍâµç×èµÄ±ä»¯¶ø±ä»¯µÄ¹æÂÉ£¬´Ó¶øÈ·¶¨¶ÔÓ¦µÄͼÏó£®
½â´ð
½â£º£¨1£©¸Éµç³ØÄÚ×è½ÏС£¬Îª¼õСʵÑéÎó²î£¬µçÁ÷±íÍâ½Ó£¬Ó¦Ñ¡Ìâ¼×Ëùʾµç·ͼ£»
£¨2£©¸ù¾Ý±íÖÐʵÑéÊý¾ÝÔÚ×ø±êϵÄÚÃè³ö¶ÔÓ¦µã£¬È»ºó×÷³öµçÔ´µÄU-IͼÏóÈçͼËùʾ£»
£¨3£©ÓÉͼʾµçÔ´U-IͼÏó¿ÉÖª£¬Í¼ÏóÓë×ÝÖá½»µã×ø±êÖµÊÇ1.50£¬ÔòµçÔ´µç¶¯ÊÆÎª£ºE=1.5V£¬
µçÔ´ÄÚ×èΪ£ºr=$\frac{¡÷U}{¡÷I}$=$\frac{1.5-1.0}{0.56}$¡Ö0.89¦¸£»
£¨4£©µçѹ±í²âÁ¿Â·¶Ëµçѹ£¬ÆäʾÊýËæ»¬¶¯±ä×èÆ÷µÄ×èÖµÔö´ó¶øÔö´ó£»¶øµ±ÄÚ×èºÍÍâ×èÏàµÈʱ£¬Êä³ö¹¦ÂÊ×î´ó£»´ËʱÊä³öµçѹΪµç¶¯ÊƵÄÒ»°ë£®Íâµç·¶Ï¿ªÊ±£¬Â·¶ËµçѹµÈÓÚµçÔ´µÄµç¶¯ÊÆ£¬´ËʱÊä³ö¹¦ÂÊΪÁ㣻¹Ê·ûºÏÌõ¼þµÄͼÏóӦΪC£®
¹Ê´ð°¸Îª£º£¨1£©¼×£»£¨2£©ÈçͼËùʾ£»£¨3£©1.5£»0.89£»£¨4£©C
µãÆÀ ±¾Ì⿼²éÁËʵÑéµç·ѡÔñ¡¢ÊµÑéÆ÷²ÄÑ¡Ôñ¡¢×÷ͼÏó¡¢ÇóµçÔ´µç¶¯ÊÆÓëÄÚ×èµÈÎÊÌ⣬Ҫ֪µÀʵÑéÔÀí£¬ÒªÕÆÎÕÓ¦ÓÃͼÏó·¨´¦ÀíʵÑéÊý¾ÝµÄ·½·¨£»µçÔ´µÄU-IͼÏóÓë×ÝÖá½»µã×ø±êÖµÊǵçÔ´µç¶¯ÊÆÍ¼ÏóбÂʵľø¶ÔÖµÊǵçÔ´ÄÚ×裮
¢ÙÃÜ¶È ¢ÚÅ£ ¢ÛÃ×/Ãë ¢Ü¼ÓËÙ¶È ¢Ý³¤¶È ¢ÞÖÊÁ¿ ¢ßǧ¿Ë ¢àʱ¼ä£®
| A£® | ÊôÓÚ¹ú¼Êµ¥Î»ÖÆÖлù±¾µ¥Î»µÄÊǢ٢ݢޢà | |
| B£® | ÊôÓÚ¹ú¼Êµ¥Î»ÖÆÖлù±¾µ¥Î»µÄÊÇ¢Ú¢ß | |
| C£® | ÊôÓÚµ¼³öµ¥Î»µÄÊÇ¢Ú¢Û | |
| D£® | ÊôÓÚ¹ú¼Êµ¥Î»µÄÊÇ¢Ü¢Ý¢Þ |
| A£® | ˮƽÀÁ¦F´óС±£³Ö²»±ä | |
| B£® | Ìú¼Ų̈¶ÔµØÃæµÄѹÁ¦´óС±£³Ö²»±ä | |
| C£® | ϸÏßÊܵ½µÄÀÁ¦´óС±£³Ö²»±ä | |
| D£® | Ìú¼Ų̈¶ÔµØÃæµÄĦ²ÁÁ¦´óС±£³Ö²»±ä |
| A£® | ÉþÉϵÄÀÁ¦½«Öð½¥Ôö´ó | B£® | Ð±ÃæµÄÖ§³ÖÁ¦Öð½¥¼õС | ||
| C£® | ÉþÉϵÄÀÁ¦½«ÏȼõСºóÔö´ó | D£® | Ð±ÃæµÄÖ§³ÖÁ¦ÏÈÔö´óºó¼õС |
| A£® | Ö»ÒªÎïÌå×öÖ±ÏßÔ˶¯£¬Î»ÒƵĴóС¾ÍºÍ·³ÌÏàµÈ | |
| B£® | Ö»ÓÐÔÚÎïÌå×öÖ±ÏßÔ˶¯Ê±£¬Æä˲ʱËٶȵĴóС²ÅµÈÓÚ˲ʱËÙÂÊ | |
| C£® | Ö»ÒªÎïÌåµÄ¼ÓËٶȲ»ÎªÁ㣬ËüµÄËÙ¶È×ÜÊÇÔڱ仯µÄ | |
| D£® | ƽ¾ùËÙÂÊÒ»¶¨µÈÓÚÆ½¾ùËٶȵĴóС |
| A£® | 2.5m/s | B£® | 2.4m/s | C£® | 2m/s | D£® | 3m/s |
| A£® | tÕý±ÈÓÚh | B£® | tÕý±ÈÓÚ$\frac{1}{h}$ | C£® | tÕý±ÈÓÚ$\sqrt{h}$ | D£® | tÕý±ÈÓÚh2 |
| A£® | µçÈÝÆ÷Éϼ«°å´øÕýµç | |
| B£® | t1ʱ¿Ì£¬µçÈÝÆ÷Ëù´øµçºÉÁ¿Îª$\frac{C{B}_{1}¦Ð{{r}_{1}}^{2}}{4{t}_{1}}$ | |
| C£® | t1ʱ¼äÖ®ºó£¬ÏßȦÁ½¶ËµÄµçѹΪ $\frac{3{B}_{1}¦Ð{{r}_{1}}^{2}}{4{t}_{1}}$ | |
| D£® | t1ʱ¿ÌÖ®ºó£¬R1Á½¶ËµÄµçѹΪ$\frac{{B}_{2}¦Ð{{r}_{2}}^{2}}{4{t}_{2}}$ |