ÌâÄ¿ÄÚÈÝ

8£®Ò»¸ö¦Ø½é×Ó·ÉÐÐʱ˥±ä³É¾²Ö¹ÖÊÁ¿¾ùΪmµÄÈý¸ö¦Ð½é×Ó£¬ÕâÈý¸ö¦Ð½é×ӵ͝Á¿¹²Ã棬ÒÑÖª£ºË¥±äǰºó½é×ÓÔ˶¯µÄËٶȶ¼Ô¶Ð¡ÓÚ¹âÔÚÕæ¿ÕÖеÄËÙ¶Èc£»Ë¥±äºóµÄÈý¸ö¦Ð½é×ӵ͝ÄÜ·Ö±ðΪT1¡¢T2ºÍT3£¬ÇÒµÚÒ»¡¢¶þ¸ö¦Ð½é×Ó·ÉÐз½ÏòÖ®¼äµÄ¼Ð½ÇΪ¦È1£¬µÚ¶þ¡¢Èý¸ö¦Ð½é×Ó·ÉÐз½ÏòÖ®¼äµÄ¼Ð½ÇΪ¦È2£¨ÈçͼËùʾ£©£»½é×ӵ͝ÄܵÈÓÚ½é×ÓµÄÄÜÁ¿ÓëÆä¾²Ö¹Ê±µÄÄÜÁ¿£¨¼´Æä¾²Ö¹ÖÊÁ¿Óëc2µÄ³Ë»ý£©Ö®²î£¬Ç󦨽é×ÓÔÚË¥±äǰµÄ˲¼äµÄ·ÉÐз½Ïò£¨ÓÃÆä·ÉÐз½ÏòÓëË¥±äºóµÄµÚ¶þ¸ö½é×ӵķÉÐз½ÏòµÄ¼Ð½Ç¼´Í¼ÖеĦսDZíʾ£©¼°Æä¾²Ö¹ÖÊÁ¿£®

·ÖÎö ½¨Á¢×ø±êϵ£¬ÔËÓÃÕý½»·Ö½â£¬·Ö±ð¶Ôx·½ÏòºÍy·½ÏòÁжþάÔ˶¯µÄ¶¯Á¿Êغ㶨ÂÉ

½â´ð ½â£ºÒÔµÚ¶þ¸ö¦Ð½é×ӵķÉÐз½ÏòΪxÖᣬÒÔʼþÆ½ÃæÎªx-yÆ½Ãæ£¬ÉèË¥±äǰ¦Ø½é×ÓºÍË¥±äºóÈý¸ö¦Ð½é×ӵ͝Á¿´óС·Ö±ðΪP¦Ø¡¢P1¡¢P2ºÍP3£¬Ë¥±äǰºóÁ£×ÓÔÚxºÍy·½ÏòµÄ×ܶ¯Á¿·Ö±ðÊØºã
P¦Øcos¦Õ=P1cos¦È1+P2+P3cos¦È2  ¢Ù
-P¦Øsin¦Õ=-P1sin¦È1+P3sin¦È2  ¢Ú
Ë¥±äǰºóÁ£×Ó×ÜÄÜÁ¿Êغã
m¦Øc2+T¦Ø=£¨mc2+T1£©+£¨mc2+T2£©+£¨mc2+T3£©  ¢Û
ʽÖÐ×ó¶ËºÍÓÒ¶ËÈý¸öÔ²À¨»¡ËùʾµÄÁ¿·Ö±ðÊÇË¥±äǰ¦Ø½é×ÓºÍË¥±äºóÈý¸ö¦Ð½é×ÓµÄ×ÜÄÜ£¨¾²ÄÜÓ붯ÄÜÖ®ºÍ£©£®Ë¥±äǰ¦Ø½é×ÓºÍˤºóÈý¸ö¦Ð½é×ÓµÄ×ÜÄÜ¿ÉÓɯ䶝Á¿ºÍ¾²Ö¹ÖÊÁ¿±íʾ³öÀ´
T¦Ø=$\frac{{P}_{¦Ø}^{2}}{2{m}_{¦Ø}}$ ¢Ü
T1=$\frac{{P}_{1}^{2}}{2{m}_{\;}}$  ¢Ý
T2=$\frac{{P}_{2}^{2}}{2{m}_{\;}}$  ¢Þ
T3=$\frac{{P}_{3}^{2}}{2{m}_{\;}}$  ¢ß
·Ö±ðÓɢݢޢßʽµÃ
P1=$\sqrt{2{mT}_{1}}$ ¢à
P2=$\sqrt{2{mT}_{2}}$ ¢á
P3=$\sqrt{2{mT}_{3}}$ ¢â
ÓÉ¢Ù¢Ú¢à¢á¢âʽµÃ
¦Õ=arctan$\frac{\sqrt{{T}_{1}}sin{¦È}_{1}-\sqrt{{T}_{3}}sin{¦È}_{2}}{\sqrt{{T}_{1}}cos{¦È}_{1}+\sqrt{{T}_{2}}+\sqrt{{T}_{3}}cos{¦È}_{2}}$⑪
P¦Ø=2m£¨T1+T2+T3£©+4m[$\sqrt{{T}_{1}{T}_{3}}$cos£¨¦È1+¦È2£©+$\sqrt{{T}_{1}{T}_{2}}$cos¦È1+$\sqrt{{T}_{2}{T}_{3}}$cos¦È2]⑫
ÓÉ¢Û¢Ü⑫ʽµÃ
2c2${m}_{¦Ø}^{2}$-2£¨3mc2+T1+T2+T3£©m¦Ø+2m£¨T1+T2+T3£©+4m[$\sqrt{{T}_{1}{T}_{3}}$cos£¨¦È1+¦È2£©+$\sqrt{{T}_{1}{T}_{2}}$cos¦È1+$\sqrt{{T}_{2}{T}_{3}}$cos¦È2]=0⑬
Æä½âΪm¦Ø=$\frac{3}{2}$m+$\frac{1}{2{c}^{2}}$£¨T1+T2+T3£©+$\sqrt{[\frac{3}{2}m+\frac{1}{2{c}^{2}}£¨{T}_{1}+{T}_{2}+{T}_{3}£©]^{2}-\frac{{P}_{¦Ø}^{2}}{2{c}^{2}}}$⑭ʽÖУ¬${P}_{¦Ø}^{2}$ÓÉ⑫ʽ¸ø³ö£®
ÁíÒ»½âm¦Ø¡«$\frac{{P}_{¦Ø}}{c}$£¬Óë·ÇÏà¶ÔÂÛ½üËÆÌõ¼þm¦Øc2£¼£¼P¦Øc Ã¬¶Ü£¬ÉáÈ¥£®
´ð£º¦Ø½é×ÓÔÚË¥±äǰµÄ˲¼äµÄ·ÉÐз½ÏòÓëË¥±äºóµÄµÚ¶þ¸ö½é×ӵķÉÐз½ÏòµÄ¼Ð½Ç¦ÕΪarctan$\frac{\sqrt{{T}_{1}}sin{¦È}_{1}-\sqrt{{T}_{3}}sin{¦È}_{2}}{\sqrt{{T}_{1}}cos{¦È}_{1}+\sqrt{{T}_{2}}+\sqrt{{T}_{3}}cos{¦È}_{2}}$£»
¦Ø½é×ӵľ²Ö¹ÖÊÁ¿Îª$\frac{3}{2}$m+$\frac{1}{2{c}^{2}}$£¨T1+T2+T3£©+$\sqrt{[\frac{3}{2}m+\frac{1}{2{c}^{2}}£¨{T}_{1}+{T}_{2}+{T}_{3}£©]^{2}-\frac{{P}_{¦Ø}^{2}}{2{c}^{2}}}$£¨ÆäÖÐ${P}_{¦Ø}^{2}$ÓÉ⑫ʽ¸ø³ö£©£®

µãÆÀ ±¾Ì⿼²é¶þάÔ˶¯µÄ¶¯Á¿Êغ㶨ÂÉ£¬ÒªÔËÓÃÕý½»·Ö½â£¬·Ö±ðÔÚx·½ÏòºÍy·½ÏòÁж¯Á¿Êغ㣬³ý´ËÖ®Í⻹ҪÇó´ó¼ÒÕÆÎÕÖÊÄÜ·½³ÌµÄÔËÓᢶ¯Á¿ºÍ¶¯ÄÜÖ®¼äµÄ»»ËãÒÔ¼°·´Èý½Çº¯ÊýµÄʹÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø