题目内容
17.一物体在F1、F2、F3三个恒力的作用下处于静止状态,现保持F1、F3不变,使F2的大小逐渐减小到零,然后再从零逐渐恢复到原来的大小.下列v-t图象大致能正确描述该物体运动情况的是( )| A. | B. | C. | D. |
分析 由题意可知,物体在多个力的作用下处于静止状态,物体所受的合力为零,其中的一个力与其他各力的合力大小相等、方向相反.分析物体的合力如何变化,确定物体的加速度如何变化,分析物体的运动情况,判断速度的变化情况,再选择图象.
解答 解:物体在多个力的作用下处于静止状态,物体所受的合力为零,使其中的一个力的大小在一段时间内均匀减小到零,然后又在相同的时间内从零均匀增大到原来的大小的过程中,物体的合力从开始均匀增大,又均匀减小恢复到零,物体的加速度先均匀增大后均匀减小到零,物体先做加速度增大的加速运动,后做加速度减小的加速度运动.根据速度图象的斜率等于加速度可知,速度图象的斜率先增大后减小,但物体的速度一直在增大,故C正确,ABD均错误.
故选:C
点评 本题考查根据物体的受力情况来分析物体运动情况的能力,要用到共点力平衡条件的推论:物体在几个力作用下平衡时,其中一个力与其他各力的合力大小相等、方向相反.
练习册系列答案
相关题目
20.
如图所示,两个弹簧的质量不计,劲度系数分别为k1、k2,它们一端固定在质量为m的物体上,另一端固定在P、Q上,当物体平衡时,上面的弹簧(k2)处于原长,若要把物体的质量换为3m(弹簧均在弹性限度内),当物体再次平衡时,物体下降的距离x为( )
| A. | $\frac{3mg}{({k}_{1}+{k}_{2})}$ | B. | $\frac{3{k}_{1}{k}_{2}}{({k}_{1}+{k}_{2})mg}$ | ||
| C. | $\frac{2mg}{({k}_{1}+{k}_{2})}$ | D. | $\frac{2{k}_{1}{k}_{2}}{({k}_{1}+{k}_{2})mg}$ |
5.如图所示为某住宅区的应急供电系统,由交流发动机和副线圈匝数可调的理想降压变压器组成.发电机中矩形线圈所为的面积为S,匝数为N,电阻不计,它可绕水平轴OO′在磁感应强度为B的水平匀强磁场中以角速度ω匀速转动,矩形线圈通过滑环连接降压变压器,滑动触头P上下移动时可改变输出电压,R0表示输电线的电阻.以线圈平面与磁场平行时为计时起点,下列判断正确的是( )

| A. | 若发电机线圈某时刻处于图示位置,变压器原线圈的电流瞬时值为零 | |
| B. | 发电机线圈感应电动势的瞬时值表达式为e=NBSωsinωt | |
| C. | 当用户功率增加、滑动触头P的位置不变时,输电线上损失的功率增大 | |
| D. | 当用户功率增加时,为使用户电压保持不变,滑动触头P应向上滑动 |
2.
一质点t=0时刻由O点开始做直线运动,其速度v随时间t按如图所示的正弦规律变化,则下列说法正确的是( )
| A. | t1时刻该质点离O点最远 | B. | t3时刻该质点所受合外力为零 | ||
| C. | t2和t4时刻该质点位于同一位置 | D. | t1~t3时间内物体的平均速度为0 |
9.
用等效思想分析变压器电路.如图a中的变压器为理想变压器,原、副线圈的匝数之比为n1:n2,副线圈与阻值为R1的电阻接成闭合电路,虚线框内部分可等效看成一个电阻R2.这里的等效指当变压器原线圈、电阻R2两端都接到电压为U=220V的交流电源上时,R1与R2消耗的电功率相等,则R2与R1的比值为( )
| A. | $\frac{{n}_{2}}{{n}_{1}}$ | B. | $\frac{{n}_{1}}{{n}_{2}}$ | C. | $\frac{{{n}_{1}}^{2}}{{{n}_{2}}^{2}}$ | D. | $\sqrt{\frac{{n}_{1}}{{n}_{2}}}$ |
6.
如图所示,竖直固定的两根等高光滑的$\frac{1}{4}$圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连接一阻值为R的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度大小为B.现有一根长度稍大于L、电阻不计的金属棒在拉力作用下,从轨道最低位置cd开始以初速度v0向右沿轨道做匀速圆周运动至轨道最高位置ab处,在此运动过程中,下列说法正确的是( )
| A. | 通过电阻R的电流方向为由内向外 | |
| B. | 通过电阻R的电流方向为由外向内 | |
| C. | 电阻R上产生的热量为$\frac{πr{B}^{2}{L}^{2}{v}_{0}}{4R}$ | |
| D. | 流过电阻R的电量为$\frac{πBLr}{2R}$ |