ÌâÄ¿ÄÚÈÝ
2£®| A£® | AËùÐèÒªµÄÏòÐÄÁ¦Ôö¼Ó×î¿ì | |
| B£® | µ±¦Ø1$£¾\sqrt{\frac{¦Ìg}{2r}}$ʱBC¼äµÄÁ¬Ïß¿ªÊ¼ÌṩÀÁ¦ | |
| C£® | µ±¦Ø2$£¾\sqrt{\frac{¦Ìg}{r}}$ʱÕûÌå»á·¢Éú»¬¶¯ | |
| D£® | µ±$\sqrt{\frac{¦Ìg}{2r}}$£¼¦Ø$£¼\sqrt{\frac{¦Ìg}{r}}$£¬ÔÚ¦ØÔö´óµÄ¹ý³ÌÖÐBC¼äµÄÀÁ¦²»¶ÏÔö´ó |
·ÖÎö ÒÀ¾ÝÏòÐÄÁ¦±í´ïʽ£¬¿ÉÒÔ·ÖÎöÓ°ÏìÏòÐÄÁ¦µÄÒòËØ£¬½ø¶ø½áºÏÌâÄ¿¸ø¶¨µÄÒÑÖªÁ¿È·¶¨ÄĸöÏòÐÄÁ¦Ôö¼Ó×î¿ì£»
BC¼äµÄÁ¬Ïß¿ªÊ¼ÌṩÀÁ¦ÊÇÔÚĦ²ÁÁ¦ÌṩÏòÐÄÁ¦²»×ãµÄÇé¿öÏ£¬Óɴ˿ɵôËʱ½ÇËÙ¶È£»
µ±CµÄĦ²ÁÁ¦´ïµ½·´Ïò×î´óʱ£¬ÎïÌ彫»á³öÏÖÏà¶Ô»¬¶¯£¬ÓÉ´Ë¿ÉÈ·¶¨´ËʱµÄ½ÇËÙ¶È£»
ÔÚ$\sqrt{\frac{¦Ìg}{2r}}$£¼¦Ø$£¼\sqrt{\frac{¦Ìg}{r}}$ʱ£¬CĦ²ÁÁ¦ÑØ×Ű뾶ÏòÍ⣬ÇÒûÓгöÏÖ»¬¶¯£¬ÓÉ´ËÒÀ¾ÝÏòÐÄÁ¦±í´ïʽ·ÖÎöBCÀÁ¦±ä»¯£®
½â´ð ½â£ºA¡¢µ±Ô²ÅÌתËÙÔö´óʱ£¬Óɾ²Ä¦²ÁÁ¦ÌṩÏòÐÄÁ¦£®Èý¸öÎïÌåµÄ½ÇËÙ¶ÈÏàµÈ£¬ÓÉF=m¦Ø2r£¬ÓÉÓÚCµÄ°ë¾¶×î´ó£¬ÖÊÁ¿×î´ó£¬¹ÊCËùÐèÒªµÄÏòÐÄÁ¦Ôö¼Ó×î¿ì£¬¹ÊA´íÎó£®
B¡¢µ±CµÄĦ²ÁÁ¦´ïµ½×î´ó¾²Ä¦²ÁÁ¦Ö®ºó£¬BC¿ªÊ¼ÌṩÀÁ¦£¬Óɴ˿ɵãº$¦Ì2mg=2m•2r{{¦Ø}_{1}}^{2}$£¬½âµÃ£º${¦Ø}_{1}=\sqrt{\frac{¦Ìg}{2r}}$£¬¹ÊBÕýÈ·£®
C¡¢µ±AÓëBµÄĦ²ÁÁ¦Ò²´ïµ½×î´óʱ£¬ÇÒBCµÄÀÁ¦´óÓÚABÕûÌåµÄĦ²ÁÁ¦Ê±ÎïÌ彫»á³öÏÖÏà¶Ô»¬¶¯£¬´ËʱAÓëB»¹Êܵ½ÉþµÄÀÁ¦£¬¶ÔC¿ÉµÃ£º$T+¦Ì•2mg=2m•2r{{¦Ø}_{2}}^{2}$£¬¶ÔABÕûÌå¿ÉµÃ£ºT=2¦Ìmg£¬½âµÃ£º${¦Ø}_{2}=\sqrt{\frac{¦Ìg}{r}}$£¬¹ÊCÕýÈ·£®
D¡¢µ±$\sqrt{\frac{¦Ìg}{2r}}$£¼¦Ø$£¼\sqrt{\frac{¦Ìg}{r}}$ʱ£¬CĦ²ÁÁ¦ÑØ×Ű뾶ÏòÀÇÒûÓгöÏÖ»¬¶¯£¬¹ÊÔÚ¦ØÔö´óµÄ¹ý³ÌÖУ¬ÓÉÓÚÏòÐÄÁ¦F=T+f²»¶ÏÔö´ó£¬¹ÊBC¼äµÄÀÁ¦²»¶ÏÔö´ó£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºBCD£®
µãÆÀ ±¾Ì⿼²éÔ²ÖÜÔ˶¯ÖÐÁ¦ÓëÔ˶¯µÄ¹ØÏµ£¬×¢Òâ±¾ÌâÖÐΪ¾²Ä¦²ÁÁ¦ÓëÉþ×ÓµÄÀÁ¦³äµ±ÏòÐÄÁ¦£¬¹ÊӦעÒ⾲Ħ²ÁÁ¦ÊÇ·ñÒÑ´ïµ½×î´ó¾²Ä¦²ÁÁ¦£®
| A£® | ³£Î¡¢³£Ñ¹Ï£¬Ò»¶¨ÖÊÁ¿µÄÀíÏëÆøÌåÔÚµÈα仯¹ý³ÌÖУ¬ÈôÎüÈÈ£¬ÔòÒ»¶¨¶ÔÍâ×ö¹¦ | |
| B£® | ·Ö×Ó¼äµÄÒýÁ¦ºÍ³âÁ¦£¬¶¼Ëæ·Ö×Ó¼ä¾àÀëµÄÔö´ó¶ø¼õС£¬µ«³âÁ¦±ÈÒýÁ¦±ä»¯¿ì | |
| C£® | ÈÈ»ú¹¤×÷¹ý³ÌÖУ¬ÈôûÓÐĦ²Á£¬ÔòËü¿ÉÒÔ½«ÎüÊÕµÄÈÈÁ¿È«²¿×ª»¯Îª»úеÄÜ | |
| D£® | ÆøÌå¶ÔÆ÷±ÚµÄѹǿ¾ÍÊÇ´óÁ¿ÆøÌå·Ö×Óµ¥Î»Ê±¼ä×÷ÓÃÔÚÆ÷±ÚÉϵÄ×ܳåÁ¿ |
| A£® | MÏà¶ÔµØÃæÓÐÏòÓÒÔ˶¯µÄÇ÷ÊÆ | B£® | µØÃæ¶ÔMµÄĦ²ÁÁ¦´óСΪFcos¦È | ||
| C£® | µØÃæ¶ÔMµÄÖ§³ÖÁ¦Îª£¨M+m£©g | D£® | ÎïÌåm¶ÔMµÄĦ²ÁÁ¦µÄ´óСΪF |
£¨1£©Ç뽫ºÏÀíµÄÏȺó˳ÐòÒÔ×Öĸ´úºÅÅÅÁÐÌîдÔÚºóÃæµÄºáÏßÉÏDCEABF»òDCEBAF
A£®±£³ÖСͰÀïµÄɳ×ÓµÄÖÊÁ¿²»±ä£¬ÔÚС³µÀï¼ÓíÀÂ룬²â³ö¼ÓËÙ¶È£¬Öظ´¼¸´Î
B£®±£³ÖС³µÖÊÁ¿²»±ä£¬¸Ä±äСͰºÍɳ×ÓµÄÖÊÁ¿£¬²â³ö¼ÓËÙ¶È£¬Öظ´¼¸´Î
C£®ÓÃÌìÆ½²â³öС³µºÍСͰµÄÖÊÁ¿
D£®Æ½ºâĦ²ÁÁ¦£¬Ê¹Ð¡³µ½üËÆ×öÔÈËÙÖ±ÏßÔ˶¯
E£®¹ÒÉÏСͰ£¬·Å½øÉ³×Ó£¬½Óͨ´òµã¼ÆÊ±Æ÷µÄµçÔ´£¬·Å¿ªÐ¡³µ£¬ÔÚÖ½´øÉÏ´òÏÂһЩÁеĵã
F£®¸ù¾Ý²âÁ¿µÄÊý¾Ý£¬·Ö±ð»³öa-FºÍa-$\frac{1}{m}$µÄͼÏó
£¨2£©ÉÏÊöʵÑéÖÐɰºÍͰµÄ×ÜÖÊÁ¿mºÍ³µÓëíÀÂëµÄ×ÜÖÊÁ¿M¼ä±ØÐëÂú×ãµÄÌõ¼þÊÇm£¼£¼M£¬ÊµÑéÖдò³öµÄÖ½´øÈçͼ1Ëùʾ£¬ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼äÊÇ0.1s£¬Í¼Öг¤¶Èµ¥Î»ÊÇcm£¬ÓÉ´Ë¿ÉÒÔËã³öС³µÔ˶¯µÄ¼ÓËÙ¶ÈÊÇ0.46m/s2
£¨3£©Èô´Ë´ÎʵÑé²âµÄС³µµÄ¼ÓËÙ¶ÈaºÍÀÁ¦F£¬Èç±íËùʾ£º
| F/N | 0.20 | 0.30 | 0.40 | 0.50 |
| a/£¨m•s-2£© | 0.10 | 0.21 | 0.29 | 0.40 |
¢ÚͼÏßÔÚFÖáÉϵĽؾàµÄÎïÀíÒâÒåÊÇС³µÊܵ½µÄĦ²ÁÁ¦Îª0.1N
¢ÛͼÏßбÂʵÄÎïÀíÒâÒåÊÇС³µºÍíÀÂëµÄ×ÜÖÊÁ¿µÄµ¹Êý£®
| A£® | µç×ÓÔÚNµãʱµÄ¶¯ÄÜ´óÓÚÆäÔÚMµãµÄ¶¯ÄÜ | |
| B£® | ¸Ãµç³¡ÓпÉÄÜÊÇÔÈÇ¿µç³¡ | |
| C£® | ¸Ãµç×ÓÔ˶¯µÄ¼ÓËÙ¶ÈÔ½À´Ô½Ð¡ | |
| D£® | µç×ÓÔ˶¯µÄ¹ì¼£ÎªÇúÏß |
| A£® | G¡¢GºÍ$\sqrt{2}$G | B£® | $\frac{\sqrt{2}}{2}$G¡¢$\frac{\sqrt{2}}{2}$G¡¢G | C£® | $\frac{1}{2}$G¡¢$\frac{\sqrt{3}}{2}$GºÍ2G | D£® | $\frac{1}{2}$G¡¢$\frac{1}{2}$GºÍ$\frac{\sqrt{3}}{2}$G |