ÌâÄ¿ÄÚÈÝ
2£®¡°ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ¡±µÄʵÑé¿ÉÒÔ²ÉÓÃÈçͼµÄ¼×»òÒÒ·½°¸À´½øÐУ®£¨1£©±È½ÏÕâÁ½ÖÖ·½°¸£¬¼×£¨Ñ¡Ìî¡°¼×¡±»ò¡°ÒÒ¡±£©·½°¸ºÃЩ£®
£¨2£©Í¼±ûÊÇijÖÖ·½°¸µÃµ½µÄÒ»ÌõÖ½´ø£¬²âµÃÿÁ½¸ö¼ÆÊýµã¼ä¾àÀëÈçͼ£¬ÒÑ֪ÿÁ½¸ö¼ÆÊýµãÖ®¼äµÄʱ¼ä¼ä¸ôT=0.1s£¬ÎïÌåÔ˶¯µÄ¼ÓËÙ¶Èa=4.83m/s2£¨±£Áô3λÓÐЧÊý×Ö£©£»
¸ÃÖ½´øÊDzÉÓÃÒÒ£¨Ñ¡Ìî¡°¼×¡±»ò¡°ÒÒ¡±£©ÊµÑé·½°¸µÃµ½µÄ£®
£¨3£©Èçͼ¶¡ÊDzÉÓü׷½°¸Ê±µÃµ½µÄÒ»ÌõÖ½´ø£¬ÔÚ¼ÆËãͼÖÐNµãËÙ¶Èʱ£¬¼¸Î»Í¬Ñ§·Ö±ðÓÃÏÂÁв»Í¬µÄ·½·¨½øÐУ¬ÆäÖÐÕýÈ·µÄÊÇCD
A£®vN=gnT
B£®vN=g£¨n-1£©T
C£®vN=$\frac{{d}_{n+1}-{d}_{n-1}}{2T}$
D£®vN=$\frac{{x}_{n}+{x}_{n+1}}{2T}$£®
·ÖÎö £¨1£©¸ù¾ÝʵÑéµÄÔÀíºÍÖ÷ÒªÊÂÏîÅжÏÄĸö·½°¸ºÃЩ£®
£¨2£©¸ù¾ÝÁ¬ÐøÏàµÈʱ¼äÄÚÎ»ÒÆÖ®²îÊÇÒ»ºãÁ¿£¬ÔËÓÃÖð²î·¨Çó³ö¼ÓËÙ¶È£¬È·¶¨Ö½´øÊÇÓÉÄĸö·½°¸µÃµ½µÄ£®
£¨3£©¸ù¾Ýij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶ÈÇó³öNµãµÄ˲ʱËÙ¶È£®
½â´ð ½â£º£¨1£©×ÔÓÉÂäÌåʵÑéÓëÐ±ÃæÐ¡³µÊµÑéÏà±È½Ï£¬×ÔÓÉÂäÌåʵÑé×èÁ¦½ÏС£¬¸Ã·½°¸ºÃЩ£®
£¨2£©¸ù¾Ý¡÷x=aT2£¬ÔËÓÃÖð²î·¨µÃ£¬a=$\frac{{x}_{3}+{x}_{4}-{x}_{1}-{x}_{2}}{4{T}^{2}}$=$\frac{£¨21.5+26.4-11.9-16.7£©¡Á1{0}^{-2}}{4¡Á0.01}$m/s2=4.83m/s2£®
ÓÉÓÚ×ÔÓÉÂäÌåʵÑé²úÉúµÄ¼ÓËÙ¶ÈÔ¼µÈÓÚg£¬¿ÉÖª¸ÃÖ½´øÊDzÉÓÃÒÒ·½°¸µÃµ½µÄ£®
£¨3£©¸ù¾Ýij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶ÈÇó³öNµãµÄËÙ¶È£¬¼´vN=$\frac{{d}_{n+1}-{d}_{n-1}}{2T}$»òvN=$\frac{{x}_{n}+{x}_{n+1}}{2T}$£¬²»Äܸù¾Ýv=gtÇó½âNµãµÄËÙ¶È£¬·ñÔò¾ÍĬÈÏÁË»úеÄÜÊØºã£¬Ê§È¥ÑéÖ¤µÄÒâÒ壮¹ÊÑ¡£ºCD£®
¹Ê´ð°¸Îª£º£¨1£©¼×¡¡£¨2£©4.83£¬ÒÒ¡¡£¨3£©CD
µãÆÀ Êé±¾ÉϵÄʵÑ飬ÎÒÃÇÒª´ÓʵÑéÔÀí¡¢ÊµÑéÒÇÆ÷¡¢ÊµÑé²½Ö衢ʵÑéÊý¾Ý´¦Àí¡¢ÊµÑé×¢ÒâÊÂÏîÕ⼸µãÈ¥¸ãÇå³þ£¬Í¬Ê±ÒªÊìÁ·Ó¦ÓÃËùѧ»ù±¾ÎïÀí֪ʶ½øÐÐÊý¾Ý´¦Àí£®
| A£® | Á½¿é°åËù´øµçºÉÁ¿Ö®ºÍ | B£® | ÆäÖÐÒ»¿é°åËù´øµçºÉÁ¿µÄ¾ø¶ÔÖµ | ||
| C£® | Á½¿é°åËù´øµçºÉÁ¿µÄ¾ø¶ÔÖµÖ®ºÍ | D£® | µçÈÝÆ÷ÿÃëÖÓÔö¼ÓµÄµçºÉÁ¿ |
| A£® | I1£ºI2=1£º2 | B£® | I1£ºI2=1£º4 | C£® | n1£ºn2=2£º1 | D£® | n1£ºn2=4£º1 |
| A£® | »úеÄÜÖð½¥¼õС£¬ÏßËÙ¶ÈÖð½¥±äС | B£® | »úеÄÜÖð½¥¼õС£¬ÏßËÙ¶ÈÖð½¥±ä´ó | ||
| C£® | »úеÄÜÖð½¥Ôö´ó£¬ÏßËÙ¶ÈÖð½¥±äС | D£® | »úеÄÜÖð½¥Ôö´ó£¬ÏßËÙ¶ÈÖð½¥Ôö´ó |
| A£® | ÀºÇò´ÓAµãµ½BµãÖØÁ¦×öµÄ¹¦ÓëBµãµ½CµãÖØÁ¦×öµÄ¹¦Ïàͬ | |
| B£® | ÀºÇò´ÓAµãÔ˶¯µ½CµãµÄ¹ý³ÌÖУ¬ÀºÇòµÄ»úеÄÜÏÈÔö¼Óºó¼õÉÙ | |
| C£® | ÀºÇò´ÓAµãÔ˶¯µ½CµãµÄ¹ý³ÌÖУ¬¶¯ÄܺÍÖØÁ¦ÊÆÄܶ¼ÊÇÏÈÔö´óºó¼õС | |
| D£® | ÀºÇòÔÚBµãʱ£¬ÖØÁ¦µÄ˲ʱ¹¦ÂÊΪÁã |