ÌâÄ¿ÄÚÈÝ
10£®| A£® | Ú¤ÍõÐÇ´ÓA¡úB¡úCµÄ¹ý³ÌÖУ¬ËÙÂÊÖð½¥±ä´ó | |
| B£® | Ú¤ÍõÐÇ´ÓA¡úBËùÓõÄʱ¼äµÈÓÚ$\frac{{T}_{0}}{4}$ | |
| C£® | Ú¤ÍõÐÇ´ÓB¡úC¡úDµÄ¹ý³ÌÖУ¬ÍòÓÐÒýÁ¦¶ÔËüÏÈ×öÕý¹¦ºó×ö¸º¹¦ | |
| D£® | Ú¤ÍõÐÇÔÚBµãµÄ¼ÓËÙ¶ÈΪ$\frac{4GM}{4{c}^{2}+£¨b-a£©^{2}}$ |
·ÖÎö Êì¼ÇÀí½â¿ªÆÕÀÕµÄÐÐÐÇÔ˶¯Èý¶¨ÂÉ£º
µÚÒ»¶¨ÂÉ£ºËùÓеÄÐÐÐÇÎ§ÈÆÌ«ÑôÔ˶¯µÄ¹ìµÀ¶¼ÊÇÍÖÔ²£¬Ì«Ñô´¦ÔÚËùÓÐÍÖÔ²µÄÒ»¸ö½¹µãÉÏ£®
µÚ¶þ¶¨ÂÉ£º¶Ôÿһ¸öÐÐÐǶøÑÔ£¬Ì«ÑôÐÐÐǵÄÁ¬ÏßÔÚÏàͬʱ¼äÄÚɨ¹ýµÄÃæ»ýÏàµÈ£®
µÚÈý¶¨ÂÉ£ºËùÓÐÐÐÐǵĹìµÀµÄ°ë³¤ÖáµÄÈý´Î·½¸ú¹«×ªÖÜÆÚµÄ¶þ´Î·½µÄ±ÈÖµ¶¼ÏàµÈ£®
¸ù¾ÝÁ¦ÓëËÙ¶È·½ÏòµÄ¼Ð½ÇÅжϸÃÁ¦ÊÇ×öÕý¹¦»¹ÊǸº¹¦£®
½â´ð ½â£ºA¡¢¸ù¾ÝµÚ¶þ¶¨ÂÉ£º¶Ôÿһ¸öÐÐÐǶøÑÔ£¬Ì«ÑôÐÐÐǵÄÁ¬ÏßÔÚÏàͬʱ¼äÄÚɨ¹ýµÄÃæ»ýÏàµÈ£®ËùÒÔÚ¤ÍõÐÇ´ÓA¡úB¡úCµÄ¹ý³ÌÖУ¬Ú¤ÍõÐÇÓëÌ«ÑôµÄ¾àÀëÔö´ó£¬ËÙÂÊÖð½¥±äС£¬¹ÊA´íÎó£»
B¡¢¹«×ªÖÜÆÚΪT0£¬Ú¤ÍõÐÇ´ÓA¡úCµÄ¹ý³ÌÖÐËùÓõÄʱ¼äÊÇ0.5T0£¬ÓÉÓÚÚ¤ÍõÐÇ´ÓA¡úB¡úCµÄ¹ý³ÌÖУ¬ËÙÂÊÖð½¥±äС£¬´ÓA¡úBÓë´ÓB¡úCµÄ·³ÌÏàµÈ£¬ËùÒÔÚ¤ÍõÐÇ´ÓA¡úBËùÓõÄʱ¼äСÓÚ$\frac{{T}_{0}}{4}$£¬¹ÊB´íÎó£»
C¡¢Ú¤ÍõÐÇ´ÓB¡úC¡úDµÄ¹ý³ÌÖУ¬ÍòÓÐÒýÁ¦·½ÏòÏÈÓëËÙ¶È·½Ïò³É¶Û½Ç£¬¹ýÁËCµãºóÍòÓÐÒýÁ¦·½ÏòÓëËÙ¶È·½Ïò³ÉÈñ½Ç£¬ËùÒÔÍòÓÐÒýÁ¦¶ÔËüÏÈ×ö¸º¹¦ºó×öÕý¹¦£¬¹ÊC´íÎó£»
D¡¢¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÖª£¬Ú¤ÍõÐÇÔÚBµãµ½Ì«ÑôµÄ¾àÀëΪr=$\sqrt{{c}^{2}+£¨\frac{b-a}{2}£©^{2}}$£¬¸ù¾ÝÍòÓÐÒýÁ¦³äµ±ÏòÐÄÁ¦Öª$\frac{GMm}{{r}^{2}}$=maÖªÚ¤ÍõÐÇÔÚBµãµÄ¼ÓËÙ¶ÈΪ$a=\frac{GM}{{r}^{2}}$=$\frac{4GM}{4{c}^{2}+{£¨b-a£©}^{2}}$£¬¹ÊDÕýÈ·£»
¹ÊÑ¡£ºD£®
µãÆÀ ÕýÈ·Àí½â¿ªÆÕÀÕµÄÐÐÐÇÔ˶¯Èý¶¨ÂÉÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£¬»á¸ù¾ÝÁ¦ÓëËÙ¶È·½ÏòµÄ¼Ð½ÇÅжϸÃÁ¦ÊÇ×öÕý¹¦»¹ÊǸº¹¦£®
| A£® | ¹âµçЧӦºÍµç×ÓµÄÑÜÉäÏÖÏó˵Ã÷Á£×ӵIJ¨¶¯ÐÔ | |
| B£® | ¦ÁÁ£×ÓÉ¢ÉäʵÑé֤ʵÁËÔ×Ӻ˵Ľṹ | |
| C£® | ÇâÔ×Ó·øÉä³öÒ»¸ö¹â×ÓºóÄÜÁ¿¼õС£¬ºËÍâµç×ÓµÄÔ˶¯¼ÓËÙ¶ÈÔö´ó | |
| D£® | ±È½áºÏÄÜÔ½´ó£¬±íʾÔ×ÓºËÖкË×Ó½áºÏµÃÔ½Àο¿£¬Ô×ÓºËÔ½Îȶ¨ | |
| E£® | Ò»Êø¹âÕÕÉ䵽ijÖÖ½ðÊôÉϲ»ÄÜ·¢Éú¹âµçЧӦ£¬ÊÇÒòΪ¹âµÄƵÂÊÌ«µÍ |
| A£® | 10N | B£® | 5N | C£® | 8.6N | D£® | 0 |
| A£® | ÔÚ¹ÂÁ¢µãµçºÉÐγɵĵ糡ÖÐûÓг¡Ç¿ÏàͬµÄÁ½µã£¬µ«ÓеçÊÆÏàͬµÄÁ½µã | |
| B£® | ÕýµçºÉÖ»Ôڵ糡Á¦×÷ÓÃÏ£¬Ò»¶¨´Ó¸ßµçÊÆµãÏòµÍµçÊÆµãÔ˶¯ | |
| C£® | ³¡Ç¿ÎªÁã´¦£¬µçÊÆ²»Ò»¶¨ÎªÁ㣻µçÊÆÎªÁã´¦£¬³¡Ç¿²»Ò»¶¨ÎªÁã | |
| D£® | ³õËÙΪÁãµÄÕýµçºÉÔڵ糡Á¦×÷ÓÃϲ»Ò»¶¨Ñص糡ÏßÔ˶¯ |
| A£® | 1£º4 | B£® | £¨$\sqrt{2}$-1£©£º1 | C£® | 1£º$\sqrt{2}$ | D£® | 1£º£¨$\sqrt{2}$-l£© |