题目内容

1.如图所示,直角三角形OAC(α=30°)区域内有B=0.5T的匀强磁场,方向如图所示.两平行极板M、N接在电压为U的直流电源上,左板为高电势.一带正电的粒子从靠近M板由静止开始加速,从N板的小孔射出电场后,垂直OA的方向从P点进入磁场中.带电粒子的荷质比为$\frac{q}{m}$=1.0×105c/kg,OP间距离为l=0.3m.全过程不计粒子所受的重力,求:
(1)要使粒子从OA边离开磁场,加速电压U需满足什么条件?
(2)粒子分别从OA、OC边离开磁场时,粒子在磁场中各自的运动的时间.

分析 (1)设粒子经电场加速后的速度为v,根据动能定理即可求得,再根据洛仑兹力提供向心力及几何关系即可求解;
(2)粒子在磁场中做圆周运动,根据圆周运动的周期公式与运动轨迹对应的圆心角即可解题.

解答 解:
(1)如图所示,
当带电粒子的轨迹与OC边相切时为临界状态,则有:
$R+\frac{R}{sinα}=l$
解得:R=0.1m
当R≤0.1m时,粒子从OA边射出.
电加速$qU=\frac{1}{2}m{v}^{2}$
磁场中$qvB=\frac{m{v}^{2}}{R}$
解得:U≤125V
(2)带电粒子在磁场做圆周运动的周期为$T=\frac{2πm}{qB}$=4π×10-5s
当粒子从OA边射出时,粒子在磁场中恰好运动了半个周期${t}_{1}=\frac{1}{2}T$=2π×10-5s
当粒子从OC边射出时,粒子在磁场中运动的时间小于$\frac{1}{3}$周期${t}_{2}≤\frac{4}{3}π×1{0}^{-5}$s
答:(1)要使粒子从OA边离开磁场,加速电压U需大于125V;
(2)粒子分别从OA、OC边离开磁场时粒子在磁场中运动的时间2π×10-5s和${t}_{2}≤\frac{4}{3}π×1{0}^{-5}$s

点评 本题主要考查了带电粒子在混合场中运动的问题,要求同学们能正确分析粒子的受力情况,再通过受力情况分析粒子的运动情况,熟练掌握圆周运动及平抛运动的基本公式,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网