ÌâÄ¿ÄÚÈÝ

8£®ÓîÖæÖдæÔÚһЩÀëÆäËûºãÐǽÏÔ¶µÄÈýÐÇϵͳ£¬Í¨³£¿ÉºöÂÔÆäËûºãÐǶÔËüÃǵÄÒýÁ¦×÷Óã¬Èý¿ÅÐǵÄÖÊÁ¿Ò²ÏàµÈ£®Òѹ۲⵽Îȶ¨µÄÈýÐÇϵͳÓÐÁ½ÖÖ£ºÒ»ÊÇÈý¿ÅÐÇλÓÚͬһÌõÖ±ÏßÉÏ£¬Á½¿ÅÐÇÎ§ÈÆÖÐÑëÐÇÔÚͬһ°ë¾¶ÎªRµÄ¹ì¼£ÉÏÔËÐУ»¶þÊÇÈý¿ÅÐÇλÓڱ߳¤ÎªlµÄµÈ±ßÈý½ÇÐεÄÈý¸ö¶¥µãÉÏ£¬²¢ÑØÍâ½ÓÓڵȱßÈý½ÇÐεÄͬ¹ìµÀÔËÐУ®Éèÿ¿ÅÐǵÄÖÊÁ¿¾ùΪm£¬ÒýÁ¦³£ÊýΪG£»Ö±ÏßÈýÐÇϵͳºÍÈý½ÇÐÎÈýÐÇϵͳÖÐÐÇÌå×÷Ô²ÖÜÔ˶¯µÄÏòÐļÓËÙ¶È·Ö±ðΪa1ºÍa2¡¢ÖÜÆÚ·Ö±ðΪT1ºÍT1£¬ÔòÏÂÁйØÏµÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\frac{{a}_{1}}{{a}_{2}}$=$\frac{5\sqrt{3}{L}^{2}}{12{R}^{2}}$B£®$\frac{{a}_{1}}{{a}_{2}}$=$\frac{\sqrt{3}{L}^{2}}{3{R}^{2}}$C£®$\frac{{T}_{1}}{{T}_{2}}$=$\sqrt{\frac{3{R}^{2}}{{L}^{4}}}$D£®$\frac{{T}_{1}}{{T}_{2}}$=$\sqrt{\frac{12{R}^{2}}{5{L}^{2}}}$

·ÖÎö ¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬×¥×¡ÎÀÐÇËùÊÜÍòÓÐÒýÁ¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬Çó³öÏòÐļÓËٶȺÍÖÜÆÚµÄ±í´ïʽ£¬´Ó¶øÇó³ö±ÈÖµµÄ´óС£®

½â´ð ½â£º¶ÔÓÚÈý¿ÅÐÇÔÚͬһÌõÖ±ÏßÉϵÄÄ£ÐÍ£¬¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦ÓУº$G\frac{{m}^{2}}{4{R}^{2}}+G\frac{{m}^{2}}{{R}^{2}}=m{a}_{1}=mR\frac{4{¦Ð}^{2}}{{{T}_{1}}^{2}}$£¬
½âµÃ${a}_{1}=\frac{5Gm}{4{R}^{2}}$£¬${T}_{1}=\sqrt{\frac{16{¦Ð}^{2}{R}^{3}}{5Gm}}$£¬
¶ÔÓÚÈý½ÇÐÎÈýÐÇϵͳ£¬$2G\frac{{m}^{2}}{{L}^{2}}cos30¡ã=m{a}_{2}=m\frac{L}{2cos30¡ã}•\frac{4{¦Ð}^{2}}{{{T}_{2}}^{2}}$£¬
½âµÃa2=$\frac{\sqrt{3}Gm}{{L}^{2}}$£¬T2=$\sqrt{\frac{4{¦Ð}^{2}{L}^{3}}{3Gm}}$£¬
Ôò$\frac{{a}_{1}}{{a}_{2}}=\frac{5\sqrt{3}{L}^{2}}{12{R}^{2}}$£¬$\frac{{T}_{1}}{{T}_{2}}=\sqrt{\frac{12{R}^{3}}{5{L}^{3}}}$£®¹ÊAÕýÈ·£¬B¡¢C¡¢D´íÎó£®
¹ÊÑ¡£ºA£®

µãÆÀ ÍòÓÐÒýÁ¦¶¨ÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉÊÇÁ¦Ñ§µÄÖØµã£¬ÔÚ±¾ÌâÖÐÓÐЩͬѧÕÒ²»³öʲôÁ¦ÌṩÏòÐÄÁ¦£¬¹Ø¼üÔÚÓÚ½øÐÐÕýÈ·ÊÜÁ¦·ÖÎö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø