ÌâÄ¿ÄÚÈÝ
19£®£¨1£©ÇóÁ£×Ó¾¹ýCµãʱµÄËÙ¶È´óС¼°ËÙ¶È·½ÏòÓëÊúÖ±·½ÏòµÄ¼Ð½ÇµÄÕýÇÐÖµ£®
£¨2£©Èô´øµçÁ£×ÓµÄÈëÉäËÙ¶È´óС¿ÉÒÔΪÈÎÒâÖµ£¨Ô¶Ð¡ÓÚ¹âËÙ£©£¬Çó´øµçÁ£×Ó´ÓÉϱ߽çÉä³öʱËٶȵÄ×îСֵ£®
·ÖÎö £¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàËÆÆ½Å×Ô˶¯£¬Ë®Æ½·ÖÔ˶¯ÊÇÔȼÓËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·ÖÔ˶¯ÊÇÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý·ÖÔ˶¯¹«Ê½ÁÐʽÇó½â£»
£¨2£©¸ù¾Ý·ÖÔ˶¯¹«Ê½Çó½âµÃµ½ºÏËٶȵıí´ïʽ½øÐзÖÎö¼´¿É£®
½â´ð ½â£º£¨1£©Á£×Ó×öÀàËÆÆ½Å×Ô˶¯£¬ÒÔˮƽ·½ÏòΪxÖᣬÊúÖ±·½ÏòΪyÖᣬ½«Ô˶¯½øÐÐÕý½»·Ö½â£¬Ë®Æ½·ÖÔ˶¯£º$\frac{L}{4}={\frac{{v}_{x}}{2}}_{\;}t$£¬
ÊúÖ±·ÖÔ˶¯£ºL=v0t£¬
ÁªÁ¢½âµÃ£º${v}_{x}=\frac{{v}_{0}}{2}$£¬
¹ÊºÏËÙ¶È´óС£ºv=$\sqrt{{v}_{x}^{2}+{v}_{0}^{2}}=\frac{\sqrt{5}}{2}{v}_{0}$£¬
ºÏËÙ¶È·½ÏòÓëÊúÖ±·½ÏòµÄ¼Ð½ÇµÄÕýÇÐÖµ£ºtan¦È=$\frac{{v}_{x}}{{v}_{0}}=\frac{1}{2}$£»
£¨2£©ÔÚÉÏÒ»ÎÊÖУ¬¶Ôˮƽ·ÖÔ˶¯£¬ÓУº${v}_{x}=at=\frac{qE}{m}•\frac{L}{{v}_{0}}=\frac{{v}_{0}}{2}$£¬¹ÊE=$\frac{m{v}_{0}^{2}}{2qL}$£»
Á£×Ó×öÀàËÆÆ½Å×Ô˶¯£¬ÊúÖ±·ÖÔ˶¯£ºL=v1t£¬
ˮƽ·ÖÔ˶¯£ºvx=at=$\frac{qE}{m}t$£¬
¹Ê${v}_{x}=\frac{{v}_{0}^{2}}{2{v}_{1}}$£¬
ºÏËÙ¶È´óС£ºv=$\sqrt{{v}_{x}^{2}+{v}_{1}^{2}}$=$\sqrt{\frac{{v}_{0}^{4}}{4{v}_{1}^{2}}+{v}_{1}^{2}}$£»
½áºÏ±í´ïʽ֪ʶ£¬ÓУº$\frac{v_0^4}{4v_1^2}+v_1^2¡Ý2\sqrt{\frac{v_0^4}{4v_1^2}}•\sqrt{v_1^2}=v_0^2$£¨µ±$\frac{v_0^4}{4v_1^2}=v_1^2$£¬¼´${v}_{1}=\frac{{v}_{0}}{2}$ʱȡµÈºÅ£©£»
¹Êµ±³õËÙ¶È${v}_{1}=\frac{{v}_{0}}{2}$ʱ£¬ºÏËÙ¶È´óСµÄ×îСֵΪv0£»
´ð£º£¨1£©Á£×Ó¾¹ýCµãʱµÄËÙ¶È´óСΪ$\frac{\sqrt{5}}{2}{v}_{0}$£¬ËÙ¶È·½ÏòÓëÊúÖ±·½ÏòµÄ¼Ð½ÇµÄÕýÇÐֵΪ$\frac{1}{2}$£®
£¨2£©Èô´øµçÁ£×ÓµÄÈëÉäËÙ¶È´óС¿ÉÒÔΪÈÎÒâÖµ£¨Ô¶Ð¡ÓÚ¹âËÙ£©£¬´øµçÁ£×Ó´ÓÉϱ߽çÉä³öʱËٶȵÄ×îСֵΪv0£®
µãÆÀ ±¾Ì⿼²éÁ£×ÓÔÚÆ«×ªµç³¡ÖеÄÔ˶¯£¬Òª²ÉÓÃÕý½»·Ö½â·¨£¬½áºÏ·ÖÔ˶¯¹«Ê½ÁÐʽ·ÖÎö£¬µÚ¶þÎÊÒª½áºÏÊýѧ²»µÈʽ½øÐзÖÎö£®
| A£® | $\frac{{v}_{1}}{{v}_{2}}$=$\frac{1}{3}$ | |
| B£® | ½öÔö´óv1£¬v2£¬ÔòÁ½ÇòÔÚ¿ÓÖÐÂäµã¾ùÔÚQµãÓÒ²à | |
| C£® | Á½ÇòµÄ³õËÙ¶ÈÎÞÂÛÔõÑù±ä»¯£¬Ö»ÒªÂäÔÚ¿ÓÖеÄͬһµã£¬v1+v2¾ÍΪ³£Êý | |
| D£® | Èô½öÔö´óv1£¬ÔòÁ½Çò¿ÉÔÚÂäÔÚ¿ÓÖÐǰÏàÓö |
| A£® | ÎïÌ廨µ½Ð±Ãæµ×¶ËµÄ¶¯ÄÜΪ60J | |
| B£® | ÎïÌå´øµçºÉÁ¿Îªq=$\frac{2mgsin¦È}{E}$ | |
| C£® | ³·È¥µç³¡Ê±£¬ÎïÌåµÄÖØÁ¦ÊÆÄÜÊÇ90J | |
| D£® | ÔÚǰһ¸öʱ¼ätÄÚÒ»¶¨²»»á³öÏÖ¶¯ÄÜÓëÖØÁ¦ÊÆÄÜÏàµÈµÄʱ¿Ì |