题目内容
13.2014年诺贝尔物理学奖被授予了日本科学家赤崎勇、天野浩和美籍日裔科学家中村修二,以表彰他们发明蓝色发光二极管(LED),并因此带来新型的节能光源.在物理学的发展过程中,许多物理学家的科学发现推动了人类历史的进步.下列表述符合物理学史实的是( )| A. | 库仑发现了电流的热效应 | |
| B. | 安培发现了电流的磁效应 | |
| C. | 法拉第发现了磁场产生电流的条件和规律 | |
| D. | 伽利略提出的万有引力定律奠定了天体力学的基础 |
分析 焦耳发现了电流的热效应.丹麦的物理学家奥斯特发现了电流的磁效应.法拉第发现了磁场产生电流的条件和规律.牛顿提出的万有引力定律奠定了天体力学的基础.
解答 解:A、焦耳发现了电流的热效应.故A错误.
B、奥斯特发现了电流的磁效应.故B错误.
C、法拉第研究了电磁感应现象,发现了磁场产生电流的条件和规律.故C正确.
D、牛顿提出的万有引力定律奠定了天体力学的基础.故D错误.
故选:C
点评 对于物理学上著名科学家、重要理论和经典学说要记牢,不要张冠李戴.这也高考考查内容之一.
练习册系列答案
相关题目
4.某实验小组利用如题图甲所示的装置探究功和动能变化的关系,他们将宽度为d的挡光片固定在小车上,用不可伸长的细线将其通过一个定滑轮与砝码盘相连,在水平桌面上的A、B两点各安装一个光电门,记录小车通过A、B时的遮光时间,小车中可以放置砝码.

(1)实验主要步骤如下:
①将木板略微倾斜以平衡摩擦力,使得细线拉力做的功等于合力对小车做的功.
②将小车停在C点,在砝码盘中放上砝码,小车在细线拉动下运动,记录此时小车、小车中砝码和挡光片的质量之和为M,砝码盘和盘中砝码的总质量为m,小车通过A、B时的遮光时间分别为t1、t2,则小车通过A、B过程中动能的变化量△E=$\frac{1}{2}M(\frac{d}{{t}_{2}^{\;}})_{\;}^{2}-\frac{1}{2}M(\frac{d}{{t}_{1}^{\;}})_{\;}^{2}$(用字母M、t1、t2、d表示).
③在小车中增减砝码或在砝码盘中增减砝码,重复②的操作.
④用游标卡尺测量挡光片的宽度d
(2)下表是他们测得的多组数据,其中M是小车、小车中砝码和挡光片的质量之和,|v22-v12|是两个速度的平方差,可以据此计算出动能变化量△E,取绳上拉力F大小近似等于砝码盘及盘中砝码的总重力,W是F在A、B间所做的功.表格中△E3=0.498J,W3=0.505J(结果保留三位有效数字).
(3)若在本实验中没有平衡摩擦力,假设小车与水平长木板之间的动摩擦因数为μ.利用上面的实验器材完成如下操作:保证小车质量不变,改变砝码盘中砝码的数量(取绳上拉力近似为砝码盘及盘中砝码的总重力),测得多组m、t1、t2的数据,并得到m与${({\frac{1}{t_2}})^2}-{({\frac{1}{t_1}})^2}$的关系图象,如图乙所示.已知图象在纵轴上的截距为b,直线PQ的斜率为k,A、B两点的距离为s,挡光片的宽度为d,则μ=$\frac{b{d}_{\;}^{2}}{2gsk}$(用字母b、d、s、k、g表示).
(1)实验主要步骤如下:
①将木板略微倾斜以平衡摩擦力,使得细线拉力做的功等于合力对小车做的功.
②将小车停在C点,在砝码盘中放上砝码,小车在细线拉动下运动,记录此时小车、小车中砝码和挡光片的质量之和为M,砝码盘和盘中砝码的总质量为m,小车通过A、B时的遮光时间分别为t1、t2,则小车通过A、B过程中动能的变化量△E=$\frac{1}{2}M(\frac{d}{{t}_{2}^{\;}})_{\;}^{2}-\frac{1}{2}M(\frac{d}{{t}_{1}^{\;}})_{\;}^{2}$(用字母M、t1、t2、d表示).
③在小车中增减砝码或在砝码盘中增减砝码,重复②的操作.
④用游标卡尺测量挡光片的宽度d
(2)下表是他们测得的多组数据,其中M是小车、小车中砝码和挡光片的质量之和,|v22-v12|是两个速度的平方差,可以据此计算出动能变化量△E,取绳上拉力F大小近似等于砝码盘及盘中砝码的总重力,W是F在A、B间所做的功.表格中△E3=0.498J,W3=0.505J(结果保留三位有效数字).
| 次数 | M/kg | |v22-v12|/(m/s)2 | △E/J | F/N | W/J |
| 1 | 1.000 | 0.380 | 0.190 | 0.400 | 0.200 |
| 2 | 1.000 | 0.826 | 0.413 | 0.840 | 0.420 |
| 3 | 1.000 | 0.996 | △E3 | 1.010 | W3 |
| 4 | 2.000 | 1.20 | 1.20 | 2.420 | 1.21 |
| 5 | 2.000 | 1.42 | 1.42 | 2.860 | 1.43 |
1.给滑块一初速度10m/s使它沿光滑斜面向上做匀减速运动,加速度大小为5m/s2,当滑块速度大小为5m/s时,所用时间可能是( )
| A. | 1s | B. | 2s | C. | 2.5s | D. | 3s |
8.如图甲所示,静止在水平地面的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的静摩擦力最大值fm与滑动摩擦力大小相等,则(

| A. | 0~t1时间内物块静止 | B. | t2时刻物块A的速度最大 | ||
| C. | t2时刻后物块A做反向运动 | D. | t4时刻物块A离出发点最远 |
18.一辆汽车做匀速直线运动,速度为20m/s,关闭发动机后以大小为4m/s2的加速度做匀减速运动,则关闭发动机后前6s内的位移大小为( )
| A. | 48m | B. | 192m | C. | 50m | D. | 108m |
5.一辆农用“小四轮”漏油,假如每隔ls漏下一滴,车在平直公路上行驶,一位同学根据漏在路面上的油滴分布,分析“小四轮”的运动情况(已知车的运动方向),下列说法中正确的是( )
| A. | 当沿运动方向油滴始终均匀分布时,车可能做匀速直线运动 | |
| B. | 当沿运动方向油滴间距逐渐增大时,车一定在做匀加速直线运动 | |
| C. | 当沿运动方向油滴间距逐渐增大时,车的加速度可能在减小 | |
| D. | 当沿运动方向油滴间距逐渐增大时,车可能在做匀减速直线运动 |
2.
如图所示,平行板电容器与直流电源(内阻不计)连接,下极板接地.一带电油滴位于容器中的P点且恰好处于平衡状态.现将平行板电容器的上极板竖直向上移动一小段距离则( )
| A. | P点的电势将降低 | |
| B. | 带点油滴将沿竖直方向向上运动 | |
| C. | 电容器的电容减小,极板带电量将减小 | |
| D. | 带电油滴的电势能将减少 |