题目内容

12.如图所示,光滑水平面与倾角为θ=37°光滑斜面平滑连接,斜面高度为h=5m,质量为mA=3kg的物体A与质量为mB=1kg的物体B通过长为2.5h轻绳连接,开始时,轻绳刚好绷直,物体B位于水平面边缘,由于受到轻微扰动,物体B由静止开始沿斜面下滑,当滑到斜面底端时,由于某种原因轻绳与AB脱离.物体A和B均可看成质点,g取10m/s2.求:(取sin37°=0.6,cos37°=0.8;AB可视为质点.)
(1)B刚好滑到斜面底端时,物体A的速度;
(2)此过程中绳对物体B所做的功;
(3)求物体A与斜面碰撞前离斜面的最远距离.

分析 (1)对AB系统由机械能守恒定律可求得小球的速度;
(2)对B球由动能定理可求得拉力所做的功;
(3)根据运动的合成与分解规律可知小球离斜面最远时沿斜面方向上的速度为零;建立直角坐标系,由运动的合成与分解可求得最远距离.

解答 解:(1)对AB系统由机械能守恒定律可知:
mBgh=$\frac{1}{2}$(mA+mB)v2
代入数据解得:v=5m/s;
(2)对B由动能定理可知:
mBgh+WT=$\frac{1}{2}$mBv2-0
解得:WT=-37.5J;
(3)如图建立坐标系:
在y轴上:
vy=vsin37°
Gy=mgcos37°
沿垂直斜面方向上加速度gy=gcos37°
hy=$\frac{{v}_{y}^{2}}{2{g}_{y}}$=$\frac{9}{16}$
答:(1)B刚好滑到斜面底端时,物体A的速度为5m/s
(2)此过程中绳对物体B所做的功-37.5J;
(3)求物体A与斜面碰撞前离斜面的最远距离为$\frac{9}{16}$.

点评 本题考查动能定理、机械能守恒及运动的合成与分解,要注意正确分析物理过程,明确小球受力情况;根据题意选择合适的物理规律求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网