ÌâÄ¿ÄÚÈÝ
17£®£¨1£©Àë×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ät1£»
£¨2£©Pµã¾àOµãµÄ¾àÀëy1ºÍÀë×ÓÔڴų¡ÖÐÔ˶¯µÄ¼ÓËÙ¶È´óСa£»
£¨3£©ÈôÏàͬµÄÀë×Ó·Ö±ð´ÓyÖáÉϵIJ»Í¬Î»ÖÃÒÔËÙ¶Èv=ky£¨y£¾0£¬kΪ³£Êý£©¡¢ÑØ+xÖá·½ÏòÉäÈë´Å³¡£¬Àë×Ó¶¼ÄÜ´òµ½Ó«¹âÆÁÉÏ£¬kÓ¦Âú×ãµÄÌõ¼þ£®
·ÖÎö £¨1£©Àë×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉ¿ÉÒÔÇó³öÀë×ÓµÄÔ˶¯Ê±¼ä£®
£¨2£©×÷³öÀë×ÓÔ˶¯¹ì¼££¬¸ù¾Ý¼¸ºÎ֪ʶÇó³ö¾àÀ룬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£®
£¨3£©×÷³öÀë×ÓÔ˶¯¹ì¼££¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÀë×ÓµÄÁÙ½ç¹ìµÀ°ë¾¶£¬È»ºó·ÖÎö´ðÌ⣮
½â´ð ½â£º£¨1£©ÉèÀë×Ó´¹Ö±´òµ½Ó«¹âÆÁÉϵÄMµãʱ£¬
ÑØy·½ÏòµÄ·ÖËÙ¶È´óСΪvy£¬Ôڵ糡ÖÐÔ˶¯µÄ¼ÓËÙ¶ÈΪa1£¬![]()
Ôò£º${v_y}=\frac{v_0}{{tan{{30}^o}}}$£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqE=ma1£¬
ÊúÖ±·ÖËÙ¶È£ºvy=a1t1£¬½âµÃ£º${t_1}=\frac{{\sqrt{3}m{v_0}}}{qE}$£»
£¨2£©Óɼ¸ºÎ¹ØÏµ¿ÉÖª£º${y_1}=\frac{1}{2}{a_1}t_1^2+{v_0}{t_1}tan{30^o}$£¬
½âµÃ£º${y_1}=\frac{5mv_0^2}{2qE}$£¬
ÉèÀë×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯°ë¾¶Îªy2£¬Ôò£º${y_2}cos{30^o}={v_0}{t_1}$£¬
¶ø£º$a=\frac{v_0^2}{y_2}$£¬½âµÃ£º$a=\frac{qE}{2m}$£»
£¨3£©ÈçͼËùʾ£¬Éè´Ó×Ý×ø±êΪy´¦ÉäÈë´Å³¡µÄÀë×Ó£¬
Ç¡ºÃÄÜ´òµ½Ó«¹âÆÁÉÏ£¬¶ÔÓ¦µÄÔ²ÖÜÔ˶¯°ë¾¶Îªr0£¬![]()
Ó뼸ºÎ֪ʶµÃ£º${r_0}+\frac{r_0}{{cos{{30}^o}}}=y$£¬
´ËÀë×Ó½øÈë´Å³¡Ê±µÄËÙ¶Èv=ky£¬ÉèÔ˶¯°ë¾¶Îªr£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº$qBv=m\frac{v^2}{r}$£¬
ΪʹÀë×ÓÄÜ´òµ½Ó«¹âÆÁÉÏÓ¦Âú×㣺r¡Ýr0£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqBv0=ma£¬
½âµÃ£º$k¡Ý\frac{{£¨2\sqrt{3}-3£©qE}}{{2m{v_0}}}$£»
´ð£º£¨1£©Àë×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼ät1Ϊ$\frac{\sqrt{3}m{v}_{0}}{qE}$£»
£¨2£©Pµã¾àOµãµÄ¾àÀëy1Ϊ$\frac{5m{v}_{0}^{2}}{2qE}$£¬Àë×ÓÔڴų¡ÖÐÔ˶¯µÄ¼ÓËÙ¶È´óСaΪ$\frac{qE}{2m}$£»
£¨3£©kÓ¦Âú×ãµÄÌõ¼þÊÇ£º$k¡Ý\frac{{£¨2\sqrt{3}-3£©qE}}{{2m{v_0}}}$£®
µãÆÀ ±¾Ì⿼²éÁËÁ£×ÓÔڵ糡Óë´Å³¡ÖеÄÔ˶¯£¬·ÖÎöÇå³þÀë×ÓÔ˶¯¹ý³Ì£¬×÷³öÁ£×ÓÔ˶¯¹ì¼££¬Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉ¡¢Å£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÕýÈ·½âÌ⣬½âÌâʱҪעÒ⼸ºÎ֪ʶµÄÓ¦Óã®
| A£® | vH=2v¦Á£»TH=T¦Á | B£® | vH=v¦Á£»TH=T¦Á | C£® | vH=v¦Á£»2TH=T¦Á | D£® | vH=2v¦Á£»2TH=T¦Á |
| A£® | ûÓÐĦ²ÁÁ¦ | B£® | Ħ²ÁÁ¦µÄ·½ÏòˮƽÏòÓÒ | ||
| C£® | Ö§³ÖÁ¦Îª£¨M+m£©g | D£® | Ö§³ÖÁ¦Ð¡ÓÚ£¨M+m£©g |
| A£® | xΪÖÊ×Ó | |
| B£® | xÊÇîʺËÖеÄÒ»¸öÖÐ×Óת»¯³ÉÒ»¸öÖÊ×Óʱ²úÉúµÄ | |
| C£® | ¦ÃÉäÏßÊÇïäÔ×Ӻ˷ųöµÄ | |
| D£® | 1gîÊ${\;}_{90}^{234}$Th¾¹ý120Ììºó»¹Ê£0.2gîÊ |