(本题12分)在几何体中,是等腰直角三角形,,和都垂直于平面,且,点是的中点。(1)求证:平面;(2)求面与面所成的角余弦值.
本题12分)长方体中,,,是底面对角线的交点.(Ⅰ) 求证:平面;(Ⅱ) 求证:平面;(Ⅲ) 求三棱锥的体积.
(本题满分12分)如图,正方形所在的平面与平面垂直,是和的交点,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的大小.
如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)求三棱锥的体积
本小题満分15分)已知为直角梯形,//,, , , 平面,(1)若异面直线与所成的角为,且,求;(2)在(1)的条件下,设为的中点,能否在上找到一点,使?(3)在(2)的条件下,求二面角的大小.
(本小题满分12分)如题19图,平行六面体的下底面是边长为的正方形,,且点在下底面上的射影恰为点.(Ⅰ)证明:面;(Ⅱ)求二面角的大小.
(本小题15分)如图在三棱锥P-ABC中,PA 分别在棱,(1)求证:BC(2)当D为PB中点时,求AD与平面PAC所成的角的余弦值;(3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。
(本小题14分)如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD(1)证明:AB; (2)求面VAD与面VDB所成的二面角的余弦值。
((本小题满分12分)如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90o,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求二面角P—DC—B的大小.
(本小题满分12分)如图,四棱锥的底面为菱形,平面,,分别为的中点,.(Ⅰ)求证:平面平面.(Ⅱ)求平面与平面所成的锐二面角的余弦值.