如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且△是等边三角形,则双曲线的离心率为
(A) (B) (C) (D)
在区间[0,10]内随机取出两个数,则这两个数的平方和也在区间[0,10]内的概率是 .
方程的解是 .
已知f(x)为R上的减函数,则满足的实数x的取值范围是
A.(-,1) B.(1,+)
C.(-,0)(0,1) D.(-,0)(1,+)
客车从甲地以60km/h的速度行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度行驶1小时到达丙地,下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间t之间的关系图象中,正确的是
(天津卷文)(本小题满分14分)
已知椭圆()的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且
(Ⅰ求椭圆的离心率;
(Ⅱ)直线AB的斜率;
(Ⅲ)设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。
(河南省开封市届高三年级第一次质量检) 双曲线的左、右焦点分别为F1、F2,O为坐标原点,点A在双曲线的右支上,点B在双曲线左准线上,
(1)求双曲线的离心率e;
(2)若此双曲线过C(2,),求双曲线的方程;
(3)在(2)的条件下,D1、D2分别是双曲线的虚轴端点(D2在y轴正半轴上),过D1的直线l交双曲线M、N,的方程。
(本小题满分14分)已知函数满足(其中为在点处的导数,为常数).(1)求函数的单调区间;(2)若方程有且只有两个不等的实数根,求常数;(3)在(2)的条件下,若,求函数的图象与轴围成的封闭图形的面积.
函数的图像上一个最高点的坐标为与之相邻的一个最低点的坐标为.
(Ⅰ)求的表达式;
(Ⅱ) 当,求函数的单调递增区间和零点.
、、的大小关系为 ( )
A. B.
C. D.