搜索
数列{a
n
}的前n项和S
n
满足:t(S
n+1
+1)=(2t+1)S
n
n∈N*.
(1)求证{a
n
}是等比数列;
(2)若{a
n
}的公比为f(t),数列{b
n
}满足:b
1
=1,b
n+1
=f(
1
b
n
),求{b
n
}的通项公式;
(3)定义数列{c
n
}为:c
n
=
1
b
n+1
b
n
,求{c
n
}的前n项和T
n
,并求
lim
n→∞
T
n
.
椭圆的中心在原点O,短轴长为
2
3
,左焦点为F(-c,0)(c>0),相应的准线l与x轴交于点A,且点F分
AO
的比为3,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程;
(2)若PF⊥QF,求直线PQ的方程.
如图,在四棱锥P-ABCD中,顶点P在底面ABCD内的射影恰好落在AB的中点O上,又∠BAD=90°,BC∥AD,且BC:AB:AD=1:2:2.
(1)求证:PD⊥AC;
(2)若PO=BC,求直线PD与AB所成的角;
(3)若平面APB与平面PCD所成的角为60°,求
PO
BC
的值.
由计算机随机选出大批正整数,取其最高位数字(如 35为3,110为1)的次数构成一个分布,已知这个分布中,数字1,2,3,…,9出现的概率正好构成一个首项为
1
5
的等差数列.现从这批正整数中任取一个,记其最高位数字为x (x=1,2,…,9).
(1)求x的概率分布;
(2)求x的期望Ex.
已知
f(x)=
(sinx+cosx)
2
2+2sin2x-
cos
2
2x
.
(1)求f(x)的定义域、值域;
(2)若f(x)=2,
-
π
4
<x<
3π
4
,求x的值.
14、有如下四个命题:
①平面α和平面β垂直的充要条件是平面α内至少有一条直线与平面β垂直;
②平面α和平面β平行的一个必要不充分条件是α内有无数条直线与平面β平行;
③直线a与平面α平行的一个充分不必要条件是平面α内有一条直线与直线a平行;
④两条直线平行是这两条直线在一个平面内的射影互相平行的既不充分也不必要条件.
其中正确的序号是
①②④
.
设f(x)=sinx+cosx,若
π
4
<
x
1
<
x
2
<
π
2
,则f(x
1
)与f(x
2
)的大小关系是
.
在直角坐标系中,有四点A(-1,2),B (0,1),C (1,2),D (x,y)同时位于一条拋物线上,则x与y满足的关系式是
.
9、某旅馆有三人间,两人间,单人间三种房间各一间,有三位成人带两个小孩来此住宿,小孩不宜单住一间(必须有成人陪同),则不同的安排住宿方法有( )
A、35种
B、27种
C、21种
D、18种
已知数列{a
n
}满足条件:a
1
=
1
7
,a
n+1
=
7
2
a
n
(1-a
n
),则对任意正偶数n,a
n+1
-a
n
=
3
7
的概率等于( )
A、1
B、
1
2
C、
n+1
2n
D、
n-1
2n
0
32558
32566
32572
32576
32582
32584
32588
32594
32596
32602
32608
32612
32614
32618
32624
32626
32632
32636
32638
32642
32644
32648
32650
32652
32653
32654
32656
32657
32658
32660
32662
32666
32668
32672
32674
32678
32684
32686
32692
32696
32698
32702
32708
32714
32716
32722
32726
32728
32734
32738
32744
32752
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案