题目内容
已知数列{an}满足条件:a1=
,an+1=
an(1-an),则对任意正偶数n,an+1-an=
的概率等于( )
| 1 |
| 7 |
| 7 |
| 2 |
| 3 |
| 7 |
| A、1 | ||
B、
| ||
C、
| ||
D、
|
分析:根据题意,依次求出a2、a3、a4的值,进而归纳出an的变化规律,结合题意中n为正偶数,计算可得答案.
解答:解:根据题意:a1=
,an+1=
an(1-an),
则a2=
×
×(1-
)=
,a3=
×
×(1-
)=
,
a4=
×
×(1-
)=
,a5=
×
×(1-
)=
,…
归纳可得:从第二项开始,奇数项为
,偶数项为
,
则对任意正偶数n,有an+1-an=
,即an+1-an=
的概率为1;
故选A.
| 1 |
| 7 |
| 7 |
| 2 |
则a2=
| 7 |
| 2 |
| 1 |
| 7 |
| 1 |
| 7 |
| 3 |
| 7 |
| 7 |
| 2 |
| 3 |
| 7 |
| 3 |
| 7 |
| 6 |
| 7 |
a4=
| 7 |
| 2 |
| 6 |
| 7 |
| 6 |
| 7 |
| 3 |
| 7 |
| 7 |
| 2 |
| 3 |
| 7 |
| 3 |
| 7 |
| 6 |
| 7 |
归纳可得:从第二项开始,奇数项为
| 6 |
| 7 |
| 3 |
| 7 |
则对任意正偶数n,有an+1-an=
| 3 |
| 7 |
| 3 |
| 7 |
故选A.
点评:本题考查数列的递推公式的运用与概率的计算,根据题意,推导出an的变化规律,是解题的关键.
练习册系列答案
相关题目