【题目】已知椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设椭圆的上、下顶点分别为, 点是椭圆上异于的任意一点, 轴, 为垂足, 为线段中点,直线交直线于点, 为线段的中点,若四边形的面积为,求直线的方程.
【题目】如图,在中,,,分别是的中点.将沿折成大小是的二面角.
(Ⅰ)求证:平面平面;
(Ⅱ)求与平面所成角的正弦值.
【题目】为了积极稳妥疫情期间的复学工作,市教育局抽调5名机关工作人员去某街道3所不同的学校开展驻点服务,每个学校至少去1人,若甲、乙两人不能去同一所学校,则不同的分配方法种数为___________.
【题目】已知数列满足,.求证:当时,
(Ⅰ);
(Ⅱ)当时,有;
(Ⅲ)当时,有.
【题目】已知,函数,.
(Ⅰ)求函数在处的切线;
(Ⅱ)若函数在处有最大值,求实数a的取值范围.
【题目】如图,在平行四边形ABCD中,沿其对角线BD将折起至,使得点在平面ABCD内的射影恰为点B,点E为的中点.
(Ⅰ)求证:平面BDE;
(Ⅱ)若,求与平面BDE所成的角.
【题目】在直角坐标系xOy中,直线l的参数方程为为参数,圆C的标准方程为以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
求直线l和圆C的极坐标方程;
若射线与l的交点为M,与圆C的交点为A,B,且点M恰好为线段AB的中点,求a的值.
【题目】.已知函数.
(1)讨论在上的单调性;
(2)设,若当,且时,,求整数的最小值.
【题目】新型冠状病毒肺炎正在全球蔓延,对世界经济影响严重,中国疫情防控,复工复学恢复经济成为各国的榜样,绵阳某商场在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电、4种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品至少有2种服装商品的概率;
(2)商场对选的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高300元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金,假设顾客每次抽奖时获奖与否是等概率的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是( )
A. 回答该问卷的总人数不可能是100个
B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多
C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少
D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个