题目内容
【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是( )
A. 回答该问卷的总人数不可能是100个
B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多
C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少
D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个
【答案】D
【解析】
先对图表数据分析处理,再结合简单的合情推理逐一检验即可得解.
对于选项A,若回答该问卷的总人数不可能是100个,则选择③④⑤的同学人数不为整数,故A正确,
对于选项B,由统计图可知,选择“设置分类明确的垃圾桶”的人数最多,故B正确,
对于选项C,由统计图可知,选择“学校团委会宣传”的人数最少,故C正确,
对于选项D,由统计图可知,选择“公益广告”的人数比选择“学校要求”的少8%,故D错误,
故选:D.
【题目】“工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.某从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁-35岁(2009年-2018年)之间各年的月平均收入(单位:千元)的散点图:(注:年龄代码1-10分别对应年龄26-35岁)
(1)由散点图知,可用回归模型拟合与的关系,试根据有关数据建立关于的回归方程;
(2)如果该从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.
附注:①参考数据:,,,,
,,,其中:取,.
②参考公式:回归方程中斜率和截距的最小二乘估计分别为,.
③新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:
旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | |||
缴税 级数 | 每月应纳税所得额(含税)收入个税起征点 | 税率 | 每月应纳税所得额(含税)收入个税起征点专项附加扣除 | 税率 |
1 | 不超过1500元的都分 | 3 | 不超过3000元的都分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元至55000元的部分 | 30 | 超过35000元至55000元的部分 | 30 |
【题目】某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动.活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元.若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这200万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取1000名,每名用户赠送1000元的红包.为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例):
10 | 20 | 30 | 40 | 50 | |
0.79 | 0.59 | 0.38 | 0.23 | 0.01 |
(1)根据上面的数据求出关于的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为2000元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于70万元,能否把保费定为5元?
参考公式:回归方程中斜率和截距的最小二乘估计分别为,.
参考数据:表中的5个值从左到右分别记为,,,,,相应的值分别记为,,,,,经计算有,其中,.